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1 Euclidean Algorithm (25 pts)

Definition 1.1 (Greatest Common Divisor). The greatest common divisor of
two positive integers a and b, denoted gcd(a, b), is defined to be the greatest
positive integer d such that d | a and d | b.

Remark 1.2. The definition of divisibility is d | a if and only if there exists an
integer q such that a = qd.

Problem 1.1./2 pts Prove that if a and b are positive integers such that a > b, then
gcd(a, b) = gcd(a− b, b).

Solution 1. If d | a and d | b, then there exists integer qa and qb such that a = dqa
and b = dqb. Therefore a− b = dqa− dqb = d(qa− qb) and d | a− b. Similarly, if
d′ | a− b and d′ | b, then d′ | a. Hence any common divisor of a and b is also a
common divisor of a− b and b and vice versa, therefore gcd(a, b) = gcd(a− b, b).

Problem 1.2./4 pts Prove that if a and b are positive integers such that a = bq + r
where 0 ≤ r < b, then gcd(a, b) = gcd(b, r).

Solution 2. If d | a and d | b, then there exist integers qa and qb such that
a = dqa and b = dqb. Therefore a − bq = d(qa − qqb) and d | a − bq = r.
Similarly, if d | b and d | r then there exist integers qb and qr such that b = dqb
and r = dqr. Thus bq + r = d(dqb + qr) and d | bq + r = a. Therefore any
common divisor of a and b is also a common divisor of b and r and vice versa.
Since the set of common divisors are the same, the greatest common divisor
must also be.

Remark 1.3 (Division Algorithm). For two positive integers a, b, there exists a
unique quotient and remainder q and r such that a = bq + r where 0 ≤ r < b.

Problem 1.3 (Euclidean Algorithm)./3 pts To calculate the greatest common divisor
of two positive integers a and b, we repeatedly apply the division algorithm to
obtain a sequence of quotients q1, q2, . . . and remainders r1, r2, . . . such that

a = bq1 + r1, 0 ≤ r1 < b

b = r1q2 + r2, 0 ≤ r2 < r1

r1 = r2q3 + r3, 0 ≤ r3 < r2
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and so on, for k ≥ 3,

rk−2 = rk−1qk + rk, 0 ≤ rk < rk−1.

Prove this process terminates after finitely many steps, at which point the re-
mainder is zero, that is, rn−1 = rnqn+1 for some n. Prove that rn = gcd(a, b).

Solution 3. The remainders decrease at each step and are non-negative, there-
fore, they must reach zero. Applying Problem 1.2 to Equations 1, 2 and 3,

gcd(a, b) = gcd(b, r1) = gcd(r1, r2) = gcd(r2, r3).

In general, gcd(rk−2, rk−1) = gcd(rk−1, rk) for 3 ≤ k ≤ n. At the final step,

gcd(a, b) = gcd(r2, r3) = · · · = gcd(rk−2, rk−1) = gcd(rn−1, rn) = rn.

Problem 1.4./3 pts Compute gcd(100631, 423041) using the Euclidean Algorithm.

Solution 4. By the Euclidean Algorithm,

423041 = 100631 · 4 + 20517

100631 = 20517 · 4 + 18563

20517 = 18563 · 1 + 1954

18563 = 1954 · 9 + 977

1954 = 977 · 2.

Therefore gcd(100631, 423041) = 977 .

Definition 1.4 (Game of Euclid). Two players A and B play the following
game, where players alternate taking turns, with A going first. The game begins
with two positive integers a > b. In a turn, a player replaces the larger number
by subtracting from it a multiple of the smaller number, such that the result is
nonnegative. Play continues until one of the numbers remaining is zero, then
the last player to take a turn wins.

Remark 1.5. The description of this game is from a paper by Cole and Davie.

Problem 1.5./3 pts Determine the player with the winning strategy in the Game
of Euclid for (a, b) = (162, 100) and (a, b) = (161, 100).

Solution 5. A wins the first game, while B wins the second:

(162, 100)
A→ (100, 62)

B→ (62, 38)
A→ (38, 24)

B→ (24, 14)
A→ (14, 10)

B→ (10, 4)
A→ (6, 4)

B→ (4, 2)
A→ (2, 0)

(161, 100)
A→ (100, 61)

B→ (61, 39)
A→ (39, 22)

B→ (22, 17)
A→ (17, 5)

B→ (7, 5)
A→ (5, 2)

B→ (3, 2)
A→ (2, 1)

B→ (1, 0).

Definition 1.6 (Golden Ratio). The two roots of the quadratic x2− x− 1 = 0
are ϕ = (1 +

√
5)/2 ≈ 1.618 and ψ = (1−

√
5)/2.

Remark 1.7. Note 162/100 = 1.62 > ϕ > 1.61 = 161/100.
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Problem 1.6./5 pts Prove that if 1 < a/b < ϕ, there is only one possible move
(a, b)→ (b, a′), and this satisfies b/a′ > ϕ.

Solution 6. Since b < a < bϕ < 2b, the only possible move is (a, b)→ (b, a− b).
Hence a′ = a− b. Furthermore, ϕ2 − ϕ = 1, so

b

a′
=

b

a− b
=

1

a/b− 1
>

1

ϕ− 1
= ϕ.

Problem 1.7./5 pts Prove that player A may force a win if a/b = 1 or a/b > ϕ.

Solution 7. When ϕ < n/m < 2, player A moves to (m,n−m) since

m

n−m
=

1

n/m− 1
<

1

ϕ− 1
= ϕ.

When n/m > 2 and n ≡ r (mod m) for 0 ≤ r < m, there are two moves:

(n,m)→ (m, r) or (n,m)→ (m+ r,m).

If r = 0, player A wins. Otherwise, ϕ is between m/r and (m+ r)/m. Player A
moves to the position whose ratio lies strictly between 1 and ϕ. Player B is left
in position (a, b) where 1 < a/b < ϕ. Player B must then move to (b, a′) where
b/a′ > ϕ, from which the process is repeated and A may force a win.

2 Fibonacci Numbers (38 pts)

Definition 2.1. The Fibonacci numbers are defined by F1 = F2 = 1 and
Fn = Fn−1 +Fn−2 for n > 2. For instance, F3 = 2, F4 = 3, F5 = 5, and so forth.

Problem 2.1./5 pts Let fn be the number of ways to tile a board of size n× 1 with
squares (size one) and dominoes (size two). Prove fn = Fn+1.

Figure 1: Some tilings of a board of size four

Solution 8. If a board of size n begins with a square, then we have to tile a
board of size n− 1. However, if the board begins with a domino, then we have
to tile a board of size n − 2. Therefore, fn = fn−1 + fn−2. Since f1 = F2 = 1
and f2 = F3 = 2, the Fibonacci numbers are shifted by an index so fn = Fn+1.

Problem 2.2./9 pts Prove the following Fibonacci identities:

• F1 + F2 + F3 + · · ·+ Fn = Fn+2 − 1.

• F1 + F3 + F5 + · · ·+ F2n−1 = F2n.

• F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

n = FnFn+1.
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Solution 9. For each problem, there are two valid methods: induction or tiling.

• Consider the number of tilings of a board of size n+ 1. Of these, fn+1− 1
use at least one domino. We consider the position of the final domino,
that is, the location 1 ≤ k ≤ n such that there is a domino covering cells k
and k+ 1 and all squares beyond that point. We therefore simply have to
tile the first k − 1 squares of the board, which can be done in fk−1 ways.
Therefore, Fn+2− 1 = fn+1− 1 =

∑n
k=1 fk−1 =

∑n
k=1 Fk = F1 + · · ·+Fn.

• Consider f2n−1, the number of tilings of a board of size 2n− 1. By parity,
there must be at least one square, therefore, we consider the position of
the final square at an odd location 2k − 1 for 1 ≤ k ≤ n. Since there is a
square covering cell 2k − 1 and all dominos beyond this point, we simply
have to tile the first 2k − 2 squares, which is in f2k−2 ways. Therefore,
f2n−1 =

∑n
k=1 f2k−2 so F2n =

∑n
k=1 F2k−1 = F1 + F3 + · · ·+ F2n−1.

• We proceed by induction. For n = 1, this is simply F 2
1 = F1F2. Assume

this statement holds for n = k, therefore F 2
1 +F 2

2 +F 2
3 +· · ·+F 2

k = FkFk+1.
Then adding the next squared Fibonacci term F 2

k+1 to both sides gives(
F 2
1 + F 2

2 + F 2
3 + · · ·+ F 2

k

)
+ F 2

k+1 = FkFk+1 + F 2
k+1

= Fk+1 (Fk + Fk+1)

= Fk+1Fk+2.

This is the identity for n = k+ 1, therefore by induction it holds for all n.

Problem 2.3./6 pts Prove Fa+b = Fa+1Fb + FaFb−1 for a, b ≥ 1.

Solution 10. We prove the analogous identity fm+n = fmfn + fm−1fn−1 first.
The left-hand side is simply the number of tilings of a board of size m+ n.

For the right-hand side, we have two cases:

• If there is no domino at cell m, we have fmfn tilings:

· · ·
1 2 m− 1 m

· · ·
m+ 1 m+ 2 m+ n

• If there is a domino at cells m and m+ 1, we have fm−1fn−1 tilings:

· · ·
1 2 m− 1

· · ·
m+ 2 m+ 3 m+ n

Therefore fm+n = fmfn + fm−1fn−1. Substituting m = a and n = b− 1,

Fa+b = fa+b−1 = fafb−1 + fa−1fb−2 = Fa+1Fb + FaFb−1.
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Definition 2.2 (Fibonacci Nim). Let there be n coins in a pile and A,B be
two players who alternate removing coins from the pile, with A going first. On
the first move, a player is not allowed to take all of the coins, and on each
subsequent move, the number of coins removed can be at most twice that of the
previous move. The winner is the player who removes the final coin(s).

Problem 2.4./2 pt Demonstrate which player has the winning strategy in Fibonacci
Nim for n = 7, 10.

Solution 11. Notice B’s move at each turn is forced: 7
A→ 5

B→ 4
A→ 3

B→ 2
A→ 0.

Similarly for n = 10, A plays 10
A→ 8. If B plays to 7, as seen above, A wins. If

B plays 8
B→ 6, then A responds 6

A→ 5, from which B is forced to play 5
B→ 4

and as above, A wins. Therefore A has a winning strategy for n = 7 and n = 10.

Problem 2.5 (Zeckendorf’s Theorem)./8 pts Prove that every positive integer N can
be represented uniquely as a sum of distinct non-consecutive Fibonacci numbers
Fk with k ≥ 2.

Solution 12. For the base case, 1 = F2. Now, assume that every every integer up
to K can be written uniquely as the sum of non-consecutive Fibonacci numbers.
Let Fmax be the largest Fibonacci number such that Fmax ≤ K + 1. If Fmax =
K + 1, then we are clearly done. Otherwise, Fmax < K + 1 < Fmax+1, therefore

0 < (K + 1)− Fmax < Fmax+1 − Fmax = Fmax−1. (?)

By our hypothesis, there exists a sequence {aj}mj=1 with aj+1 > aj +1 such that

K + 1− Fmax = Fa1
+ Fa2

+ · · ·+ Fam
.

Since Fam
< Fmax−1 by (?), adding Fmax to both sides produces a valid repre-

sentation for K + 1. The method used here is known as a greedy strategy.
To prove uniqueness, we require the following lemma:

Lemma 2.3. The sum of any set of distinct, non-consecutive Fibonacci numbers
whose largest member is Fj is strictly less than the next Fibonacci number Fj+1.

Proof : The next largest member of our set is at most Fj−2, whose sum is
strictly less than Fj−1, therefore the sum of the set is less than Fj−1+Fj = Fj+1.

Assume for the sake of contradiction we have two distinct representations:

K + 1 = Fa1 + Fa2 + · · ·+ Fam = Fb1 + Fb2 + · · ·+ Fbl .

Without loss of generality, am ≥ bl. If am > bl, by our Lemma,

K + 1 = Fb1 + Fb2 + · · ·+ Fbl < Fbl+1 − 1

≤ Fam − 1

< Fa1 + Fa2 + · · ·+ Fam

= K + 1.

Contradiction. Hence am = bl. By our hypothesis, K + 1− Fam
= K + 1− Fbl

has a unique representation, therefore K + 1 also has a unique representation.
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Definition 2.4. Consider more general positions in Fibonacci Nim as pairs
(q, r) consisting of a number of coins r remaining together with a “quota” q,
specifying the maximum number of coins a player may take in the next move.
Say that a position is nice if q is at least the smallest term in the Zeckendorf
representation of r.

Problem 2.6./8 pts (i) Show that given a nice position, there is a move such that the
resulting position is not nice. (ii) Show that any move from a position which is
not nice results in a nice position. (iii) Determine with proof the starting values
of n for which the first player has no winning strategy.

Solution 13. (Written by Gideon Leeper)
(i) First, an inductive argument shows that Fk+2 > 2Fk for all k ≥ 2:

this holds when k = 2, 3, and if Fk+2 > 2Fk and Fk+3 > 2Fk+1, then Fk+4 =
Fk+3+Fk+2 > 2Fk+1+2Fk = Fk+2. Now let (q, r) be a nice position, so writing
r = Fa1

+ Fa2
+ · · ·+ Fak

in its Zeckendorf representation, these terms form an
increasing sequence of non-consecutive Fibonacci numbers with all ai ≥ 2, and
q ≥ Fa1

. Thus the move given by taking Fa1
coins is valid, and the resulting

position is (2Fa1 , r−Fa1). Note r−Fa1 = Fa2 +Fa3 + · · ·+Fak
, which has least

term Fa2 , but since we must have a2 ≥ a1 + 2, it follows that Fa2 ≥ Fa1+2 >
2Fa1

, meaning the smallest term in the Zeckendorf representation of r − Fa1
is

greater than the quota 2Fa1
, meaning the new position is not nice.

(ii) Let (q, r) be a position which is not nice, so each term in the Zeckendorf
representation of r is greater than q. Then any move consists of taking some
0 < x ≤ q coins, resulting in the position (2x, r − x). Suppose such a position
is not nice. Then each term of the Zeckendorf representation of r− x is at least
2x. This means the smallest term Fa of the representation of r − x is greater
than 2x, while the largest term Fb of the Zeckendorf representation of x is at
most x, hence a ≥ b+ 2. Thus concatenating the Zeckendorf representations of
r−x and x gives the Zeckendorf representation of r, and since this contains the
terms of the representation of x, some term is less than x ≤ q, which contradicts
that (q, r) is not nice. Thus the result of any move from (q, r) is nice.

(iii) First we prove nice positions are winning for the current player. We
proceed by strong induction on r. When r = 1 = F2, the current player can
take 1 coin and win. If the current player has a winning strategy at nice positions
(q, r) for r = 1, 2, . . . , k, then when (q, r) is nice for r = k+1, we have two cases.
Either q ≥ r, in which case the current player can take all r coins and win, or
r > q > Fa1

, the smallest term in the Zeckendorf representation of r. In this
case, the current player, say A, can take Fa1

coins, so the remaining position
is not nice by (i). Thus the other player cannot win in one move, and by (ii)
any move by B results in a nice position (q′, r′) with r′ < r. By the inductive
hypothesis, since this position (q′, r′) is winning, A has a winning strategy to
proceed. It also follows that any position which is not nice is a losing position,
since any move by the next player A results in a nice position, i.e. a winning
position for the other player B. Finally, consider the initial position in which
the games starts, namely (n− 1, n). This is not nice if the smallest term of the
Zeckendorf representation of n is greater than n−1, or n is a Fibonacci number.
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3 Divisibility Sequences (27 pts)

Definition 3.1. A divisibility sequence is an integer sequence an for n ≥ 1,

m | n⇒ am | an.

Problem 3.1./4 pts Prove the Fibonacci numbers are a divisibility sequence.

Solution 14. We claim Fm | Fmq for all natural q. We use proof by induction.
For q = 1, Fm | Fm. For q = 2, F2m = Fm+1Fm + FmFm−1 so Fm | F2m.

Suppose the statement is true for q = k, and we show it holds for q = k+ 1.
From Problem 2.3 with a = mk and b = m, Fmk+m = Fmk+1Fm + FmkFm−1.
Since Fm | Fmk (hypothesis), Fm | Fmk+m by the linear combination theorem.

Problem 3.2./3 pts Prove the sequence an = An−Bn is divisibility for A > B > 0.

Solution 15. For a natural number q,

anq = Anq −Bnq

= (An)
q − (Bn)

q

= (An −Bn)
(
An·(q−1) +An·(q−2)Bn + · · ·+Bn·(q−1)

)
.

Therefore an | anq implying an is a divisibility sequence.

Definition 3.2. A divisibility sequence has strong divisibility if for all m,n
positive integers, gcd(am, an) = agcd(m,n).

Problem 3.3./3 pts Prove the sequence an = kn for natural k has strong divisibility.

Solution 16. We distribute: gcd(am, an) = gcd(km, kn) = k gcd(m,n) = agcd(m,n).

Problem 3.4./8 pts Prove an = kn − 1 for natural k has strong divisibility. (Hint:
There exist integers x and y such that gcd(m,n) = mx+ ny by Bézout’s.)

Solution 17. Let d = gcd(km − 1, kn − 1) and kgcd(m,n) − 1 = agcd(m,n). Then
since d | km − 1, km ≡ 1 (mod d). Similarly, kn ≡ 1 (mod d). Therefore,

kgcd(m,n) − 1 = kmx+ny − 1 = kmxkny − 1 ≡ 0 (mod d),

so d | kgcd(m,n) − 1. Similarly, gcd(m,n) | m and gcd(m,n) | n, so by Problem
3.2,

kgcd(m,n) − 1 | km − 1 and kgcd(m,n) − 1 | kn − 1.

Thus kgcd(m,n)− 1 | gcd(km− 1, kn− 1) = d and we conclude d = kgcd(m,n)− 1.
Alternatively, we could note if n = qm + r, then gcd(kn − 1, km − 1) =

gcd(kn−m − 1, km − 1) = · · · = gcd(kn−qm − 1, km − 1) = gcd(kr − 1, km − 1).
This strategy will be useful in the next question.

Problem 3.5./9 pts Prove the Fibonacci numbers have strong divisibility.
(Hint: Show that if n = qm+ r, then gcd(Fn, Fm) = gcd(Fm, Fr).)
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Solution 18. Let n = mq + r using the division algorithm. Using Problem 2.3,

Fn = Fmq+r = Fmq+1Fr + FmqFr−1.

Since Fm | Fmq, we can subtract multiples of Fn using the Euclidean algorithm:

gcd(Fn, Fm) = gcd(Fmq+1Fr + FmqFr−1, Fm) = gcd(Fmq+1Fr, Fm).

Finally, gcd(Fmq+1, Fm) = 1 since consecutive Fibonacci numbers are coprime1:

gcd(Fn, Fm) = gcd(Fm, Fr).

This is the Euclidean algorithm! For example, if m = 182 and n = 65,

gcd(F182, F65) = gcd(F65, F52) = gcd(F52, F13) = F13.

It follows that gcd(Fm, Fn) = Fgcd(m,n).
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1The proof is induction, gcd(Fn, Fn−1) = gcd(Fn−1, Fn−2) = · · · = gcd(F2, F1) = 1.
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