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CMM 2024 Integration Bee Qualification Test Solutions

!
Problem 1. / (4x — 6x%/3) dx
0

Proposed by Ritvik Teegavarapu

-8
Solution: | —
olution: | —

This is a simple use of the power rule for integrals.

1 4. 1+1 . %-‘rl 1 18
/ (4x — 6x%/3) dx = r 62)“ = <2x2 - — -x5/3>

xy/x—1

X

4
Problem 2. / dx
1

Proposed by Ritvik Teegavarapu

14
Solution: 3~ 21In(2)

We begin by splitting the integrand into two fractions as follows.

[t ()

We can now integrate separately as follows.

4 4 4 3/2
/ (\/;Cl> dx = \/;Cdx—/ 1dx:<2x )
1 X 1 1 x 3

We now evaluate each of these expressions as follows.

32 4 .43/2 .13/2
- () v () o

1
Problem 3. /
0

4
— (In|x])

4
— (Inx[)

1
/4 2tan(0)

1 +tan?(6)
Proposed by Ritvik Teegavarapu

1
Solution: | -
olution

We first employ the variant of the Pythagorean identity that states the following.
14 tan?(6) = sec?(H)

Therefore, the integrand simplifies as follows.

7/4  2tan(H) ©/4 2tan() /4 5
VY 49 = = 2tan(0 0)do
/o T tan(6) de /0 soc2(0) de /0 an(0)cos“(0)

1

18 |8
5 |5

14

5 —2In(2)
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Expanding the definition of tangent and double-angle identity, we have the following.

/4 sin(6) AN AN
/o 2- <cos(9)> -cos?(0) d6 —/0 2sin(0)cos(6) d6 —/0 sin(26) dO

We can now integrate regularly to obtain a final answer as follows.

/4 —cos(20) |™*  —cos(m/2) cos(0) 1 |1

in(20)dg — —SE0) | _o. ]!

/o sin(20) 5 . > + > +2 >
o pl/x
Problem4./ 5
X

Proposed by Ritvik Teegavarapu

Solution:

To get rid of the exponent, we immediately consider the u-substitution of u = 1/x, which implies that du =
—1/x? dx. Therefore, our integral becomes the following.

0 el/x 0 1
/ — = / —e' du = / e" du
- 1 0

Note that our bounds were transformed as follows.

u:Tzl u:;:O

We can then evaluate this integral to get our final answer.

1
/ e’ du=¢e"
0

1

o
V1—x*

Proposed by Ritvik Teegavarapu

T
Solution: | —
ouzon

We first recognize that 2x is the derivative of x?, which means we can utilize the u-substitution of u = x

as follows.
/2'/4 2x d /21/2 du
X =
0 1—x4 0 V1—u?

Note that our bounds were transformed as follows.

2
Problem 5. / dx
0

2

u=0>=0
U= (271/4>2 _n-1/2

2
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One can immediately recognize that this is the anti-derivative of arcsin(u), but we can show it here by consid-
ering the substitution u = sin(v), which makes du = cos(v) dv as follows.

arcsm 2 / COS /arcsm COS )d
cos2 )

2-1/2 arcsm(Z /2 ) COS
/ v1— M2 /arcsin(O) /1 s1n / \/ | COS(

To determine if we need to consider sign in the denominator of the integrand, we must evaluate the upper bound

of the integral as follows.
1 2
arcsin (2_1/2> —arcsin | — | = arcsin £ = T
V2 2 4

Since cos(v) is positive on the interval elicited by the bounds of the integral, we obtain the final answer as

follows.
/ﬂ/4COS(V)dV:/n/4dV:VTC/4:ﬂ:—O: E
0 cos(v) 0 0 4 4

6
Problem 6. / |x — 3] dx
0

Proposed by Ritvik Teegavarapu
Solution: @

This integral lends itself to a more geometric approach, in that the integrand can be decomposed into two
triangles. Specifically, we have that one of the triangles is sloping downward with m = —1 on the interval to
[0,3], and one of the triangles is sloping upward with m = 1 on the interval to [3,6].

Therefore, we have two triangles, one on each sub-interval. Each of the triangles has a base of 3 since the

sub-interval lengths are each 3, and height 3 since the y-intercept of the lines mentioned above is 3. Thus,
adding the areas of both of these triangles, we have the following.

9 9
A at]

The calculus-based approach is shown as follows.

/06’x—3| dx:/03—(x—3) dx+/36(x_3) dx
[renon(+3)[-(0-3)-(-5)
[ena=(F2[=(5-26)-(-5)-0-(3) -3
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2 4+ sin(4x)

Problem 7.
roblem / )

Proposed by Ritvik Teegavarapu
Solution:

We begin by splitting the integral as follows.

/2 4+ sin(4x) dx—/ +/ sin(4
2 44X 24422 2 4+ x2

The former integral looks similar to that of the derivative of arctan(x), but we modify as follows.

2 4 1 2 1 2 1
/ ﬁ%dx: 2 _/ 72(1)(
L 1 L L

This integral evaluates to the following.

2 1
/ ———— dx=2-arctan <{>
215 () :
However, the latter integrand is odd (due to sin(4x)), which means that the integral becomes 0 across symmetric

bounds. 2 nid
[ 4
2 44+x
Therefore, our initial integral becomes the following.

2 4+ sin(4x)

-2

2

= 2arctan(1) — 2arctan(—1) =2- T 27T g
~ 4 4

dx

1
Problem 8. /
0

1+1

X

Proposed by Ritvik Teegavarapu

, 1 In(3)
Solution: | = - (1
olution 3 <+ 2 )

We first seek to simplify this nested fraction as much as possible, by making a common denominator in the
most nested fraction as follows.

1 1 1 1 1 1
/ —dx = —dx = dx
0 1+ﬁ 0 1+g 0 1+x+1

x ' x

We repeat the same procedure once again to simplify.

1 _/ B x—|—1
x+1 X 2x+1
0 x+1 x+1 2x+1
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‘We now formulate the numerator to take on the form of the denominator as follows.
2x+2  2x+1 1
= +

1=
X+ 2 2 "2

Substituting this into the integrand and splitting, we have the following.

12041 1 1 2% 1 1 VeI 1
27—i_2dX:/ Al + dX:/ — 4 —— ) dx
0o 2x+1 0 \2-(2x+1) 2-(2x+1) 0 \2 2-(2x+1)

Factoring out the common factor, we can now regularly integrate as follows.

e 1 1 In2x+11\|" 1 n2-14+1]\ 1 Inf2-0+1|
= / 1+ dx )= (x+—— )| =2 (14— ) oo o 2
2 \ o 2+ 1 2 2

0o 2 2 2 2
Simplifying, we have the following.
1 In|2+1| 1 (In|0+1] In(3)
S S TSt el B N (il Ll N [ e I |
2 < * 2 ) 2 ( 2 + 2

Problem 9. /e : <ln(ln(x)) + lnzx)) dx

| =

Proposed by Ritvik Teegavarapu

Solution: | *1n(2)

To remove the nested natural logarithm, we consider the substitution x = ¢“, which makes dx = e du. Thus,
our integral becomes the following.

/e ¢ (m(ln(x)) + mzx)> dx = /1 ’ <ln(ln(e”)) + ln(leu)> (" du) = /12 (1“(”) + i) (e du)

Note that our bounds were transformed as follows.

u=In(e) =1 u=In(e?) =2

Splitting the integral into two, we have the following equivalent form.

/12 <ln(u)+blt> -(e" du) :/lze”.ln(u) du+/lzeuu du

Since we do not know how to evaluate the latter integral, we evaluate the former using integration by parts, in
which we have the following.

1
a=1In(u) a=_du
db=¢"du b=¢e"

Therefore, our integral becomes the following.

2 2 2 ot
/e”-ln(u)du:/adb:a-b —/ — du
1 1 1 u

2 2
—/ b da=e"In(u)
1 1

5
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This exactly cancels out with the latter integral, which allows to evaluate to get our final answer as follows.

2

/1 ’ (m(u) + i) (¢ du) = (e”“(”) 1
-3

Problem 10. / 71 dx
xl4+x

2 2 U 2 LU
—/ < du> —i—/ £ du= e"In(u)
1 1 u 1 Uu

Proposed by Ritvik Teegavarapu

11

Solution: | —
olution: | —

Let us recall the expansion of the sum of cubes as follows.

(a+b)* =d® +3a°b + 3ab® + b*
If we substitute @ = x and b = x~!, we have the following.

(x+x_1)3 =x+3x% x4 3x- (x_l)2 + (x_1)3

Simplifying, we have the following.

(x+x71)3 =433 a7
Solving for x* +x73, we have the following.

(x+x*1)3 =3 (x+x ) = 4x?

Substituting this as the equivalent form of our integrand, we get the following.

2,3 1 (x4+x71)7 =3 (x+x71) 2 N2
/ x71+x 7 —/ P —i—x—l dx-/1 (()H—x ) —3) dx

We can now freely expand as follows.

/12<(x+x1)2—3> dx—/2 (P +2-xx '+ (x1)?2-3) dx—/l2 (P +x2-1) dx

1
2 3 3
2 1
=(=-212)-(=-1""-1
1 <3 > <3 >

Integrating regularly, we have the following.

2 3 —1
2, —2 _ (X  x
/l(x—{—x l)dx—<3+ 1 x)

Simplifying, we have the following.

23 13 8 1 1 8 1 1 7 1 14-3
—271-2 171—1 2= (z-1-1)=Z—=—= =-—-=—"
<3 > (3 > <3 2 ) <3 ) 3 2 3 3 2 6

=e*In(2) —e'In(1) =

¢’In(2)
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3 3x+4
Problem 11. —d
roblem /0 a3 &

Proposed by Ritvik Teegavarapu

71n(2)
2

Solution:

‘We first factor the denominator as follows.

3 3x+4 3 3x+4
JA SR S,
0 x*+4x+3 o (x+1)-(x+3)

We can then seek the partial fraction decomposition form of this fraction as follows.

3 3x+4 3/ A B
T k= d
/o (x+1)-(x+3) * /o <x+1+x+3) *

To solve for A and B, we have the following system of equations in matching the numerator.

A-(x+3)+B-(x+1)=3x+4

This gives us the following two equations.
A+B=3

3A+B=4

From these equations, we can deduce that A = 1/2 and B = 5/2. Therefore, our equivalent integrand becomes
the following.

/03de:/03 (2'(x1+1) +2-(x5+3)> dXZ%' </03 (xil +xi3> dx)

We can evaluate this integral as follows.

! /3 LS Vax) =Lt 1]4+5 mpx+3)
. X | =—-(In -1In
2 o \x+1 x+3 2 * o

This simplifies as follows.

3

) -(ln(4)+5‘ln(6))—%-(ln(1)+5~ln(3))

| =

2 2 2 2 2

(In(4) +5-In(6)) - % (In(1)45-In(3)) = In(4)  5-(n(2)+In(3)) 5In(3) _2In(2)  5In(2) _|7In(2)

N —

1
Problem 12. / ¢* - (tan(x) 4 tan(x) — x) dx
0

Proposed by Ritvik Teegavarapu

Solution: | e- (tan(1) — 1)

We seek to manipulate the integrand in the form of a product rule, otherwise known as (fg) = f'g+¢'f.
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Since we see that there is a ¢* present in the integrand, we claim that f = ¢* since it will not disappear in the
product rule. Substituting this into our product rule equation, we have the following.

(¢ g(x)) = ¢ g(x) + "¢ (x) = &*- (g(x) +¢(x))
Therefore, setting this equal to the integrand, we have the following.
¢*- (g(x) +4'(x)) = ¢*- (tan(x) + tan® (x) —x)
g(x) + ¢ (x) = tan(x) + tan? (x) — x
We first recognize that we have the following relation.
(tan(x))" = sec?(x)
Therefore, we use the Pythagorean identity to expand our functional equation as follows.
¢(x) +¢/(x) = tan(x) + (sec?(x) — 1) —x

Regrouping, we have the following.

g(x) +§(x) = (tan(x) —x) + (sec’(x) — 1)

Therefore, we say that g(x) = tan(x) — x. From there, our integrand becomes the following.

1

1 1
/0 ¢ - (tan(x) + tan?(x) — x) dx = /0 (" - (tan(x) — x)) dx = (¢* - (tan(x) — x))

0
Evaluating, we have the final answer as follows.

1
= (e'-(tan(1) — 1)) — (°- (tan(0) — 0)) = e- (tan(1) = 1) = 1- (0—0) = e- (tan(1) — 1)

(¢"- (tan(x) —x))

/4
Problem 13. / tan’(20 — 1) dO
0

Proposed by Ritvik Teegavarapu

Solution: | csc(2) — g

We immediately seek to eliminate the inner argument of the trigonometric function, so we consider the u-
substitution of u = 20 — 1, which produces a differential of du = 2 d6. Therefore, our integral becomes the

following.
& /4 (m—2)/2 du
/ tan®(20 — 1) d6 :>/ tan? (i) <2>
0 —1

Note that our bounds were transformed as follows.

u=20-1=0—1=—1
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T T T—2
:2-(7>—1:7—1:—
" 4 2 2

From here, we can use the Pythagorean identity relation of trigonometric functions, which states that tan?(u) +
1 = sec?(u). This also allows us to exploit that sec?(u) has a nice anti-derivative, which we show as follows.

/(1”2)/2tan2(u) <dzu> = % (/(17[2)/2(560 (u)—1) du> = % [(tan(u) —u)

Evaluating this, we have the following.

(n12)/2] :%' [(tan (n;2) B <7r;2>> _(tan(—l)_(—l))]

Simplifying, we have the following.

(o 1) - (50~ om0 3 o () Soun

We can simplify the first component using the definition of tangent and sum-angle identities as follows.

<n2>/2]

-1

1
3" [(tan(u) —u)

. (7‘5 1) sin (5 —1)  sin(5)cos(1) —cos (%) sin(1)  sin(F)cos(1)  cos(1) (1)
an( - — = = =co

2 cos(%2-1) cos(z)cos(l)—i—sin (%)sin(1)  sin(%)sin(1)  sin(1)
Furthermore, we can simplify cot(1) + tan(1) as follows using the Pythagorean identities and double-angle

identities.
cos(1) ~sin(1) _ cos?(1)+sin’*(1)

t(1)+tan(1 = = ——— =2csc(2
cot(1) +tan(1) = sin(1) ~ cos(1) sin(1)cos(1) 5102(2) cse(2)
Therefore, our final answer becomes the following.
! [tan (E 1) z —i—tan(l)] _1 [2csc(2) E} =|csc(2) r
2 2 2 2 21 4

/2 1
Problem 14. / ——dé
0 V2—cos(8)

Proposed by Ritvik Teegavarapu

Solution: | 2 -arctan(v/2 + 1)

We utilize the Weierstrass substitution to give us the following.

2dt 2 ! 2
/ f—cos / \f ’i <1+t2> 0 V2(1+12)—(1—-12) 0 2-(V24+1)+(V2-1)
From here, we scale to then try and formulate an inverse trigonometric expression.

/l 2 .\/E_ldt— ! Z(ﬂ_l) dt—/lz(\/i_l)dt
0 2-(V24+1)+(vV2—=1) v2—=1  Jo 2-(V2+41)-(V2=1)+ (V212 Jo 2+ (vV2-1)?

9
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Note that the inverse trigonometric function of interest here is as follows, which should be a fairly obvious

result.
a a X
/m dX: B -arctan (Z) +C

Using this, we have the following.

L 2(v2-1) _2(v2-1) pt
/0t2+(ﬂ1)2 dt = (f—l) arctan(\@1>

1

1
= 2 -.arctan =|2.arctan(v2+1
<ﬂ1> ( )

0

10



