
Chapter 3

Functions between Sets

3.1 Functions

3.1.1 Functions, Domains, and Co-domains

In the previous chapter, we investigated the basics of sets and operations on
sets. In this chapter, we will analyze the notion of function between two sets.
Similar to the functions from Pre-Calculus or Calculus, a function f will, to
every input x, assign an output f(x). In previous Mathematics courses, though,
the functions we dealt with had as their inputs and outputs real numbers. In
general, though, these inputs and outputs need to only be elements of two
(perhaps different) sets.

Given two sets S and T , a function f from S to T (written f : S → T ) is
an assignment, to every s ∈ S, one element f(s) ∈ T . Implicit in this definition
are the following important properties of functions:

· Functions are well-defined. In other words, given an input s ∈ S, f(s)
takes on only a single value in T . In other words, if f(s) = t1 and f(s) = t2,
then t1 = t2.

· Every input s ∈ S has some output. Thus, we cannot have an s ∈ S such
that f(s) has no value.

· For every s ∈ S, f(s) must be an element of T . In other words, a function
can only output elements of the output set T .

If f : S → T is a function, then the input set S is called the domain of f
and the output set T is called the co-domain or range.

3.1.2 Examples of Functions

Below are some examples of functions between sets:

· Consider f : R → R given by f(x) = x2. Functions like this are the
kind that were investigated in high school Mathematics courses. Here, the
domain and co-domain are both the set of real numbers R.

· Consider f : R → Z given by the floor function f(x) = bxc, where bxc is
the largest integer less than or equal to x. Clearly, f(x) = bxc is defined
for any x ∈ R, and it will output an integer. Notice, that we could have
also considered this f to be a function f : R→ R, since Z ⊂ R.
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· Let N+ be the set of all positive integers: N+ = {1, 2, 3, 4, . . .} and consider
the function ϕ : N+ → N+, where ϕ(n) is equal to the number of all
positive integers less than or equal to n that share no common divisors
with n. So, for example, ϕ(9) = 6 since the six numbers 1, 2, 4, 5, 7, 8
share no common divisors with 9. Clearly, ϕ only makes sense for positive
integers (hence the domain is N+) and can only output positive integers.
Notice that, if p is prime, then ϕ(p) = p− 1 since all numbers 1 ≤ n < p
have no common factors with the prime p. This function ϕ is known as
Euler’s totient function and is of crucial importance in Number Theory.

· Consider the function f : Z× Z→ Z given by f(x, y) = x · y. Notice that
this function inputs an element of the product Z×Z given by (x, y). Since
x, y ∈ Z, then the output xy ∈ Z and so Z is an appropriate co-domain
for f .

· Let A be the set of all letters in the English alphabet. Thus

A = {a, b, c, . . . , x, y, z}.

Consider the function f : A → N that assigns to the n-th letter of the
alphabet, the number n. Thus, f(a) = 1 and f(z) = 26. This function
is well-defined for any letter in the alphabet and will output a natural
number (since its place in alphabet is a non-negative whole number).

3.1.3 Images and Pre-images

If f : S → T and f(s) = t, then we say that the element t is the image of the
element s. If we collect the images of every s ∈ S into a set, that subset of T is
called the image of f and is given by

Im(f) = {t ∈ T | ∃s ∈ S such that f(s) = t}.

Clearly, the image of the function f is a subset of the co-domain T . Thus,
Im(f) ⊂ T . However, it is not always the case that the image is the entire set
T .

If f(s) = t, then we can describe this relation in another way. Since s maps
to t, we can say that s is a pre-image of the element t. If we collect all the
pre-images of a given t into a set, we can form the pre-image of t and define it
as

f−1({t}) = {s ∈ S | f(s) = t}.

We may generalize this further and define the pre-image of a subset U of T . For
this, the pre-image will be all elements in S that map into the subset U . Thus,

f−1(U) = {s ∈ S | f(s) ∈ U}.

Below are some examples of images and pre-images of the functions given
above.

· For f : R→ R given by f(x) = x2, the image of f is equal to

Im(f) = {x ∈ R |x ≥ 0},

since every single non-negative number is outputted. As an example of a
pre-image for this function, we have

f−1({3}) = {−
√

3,
√

3}
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f−1({−5}) = ∅.

Thus, the pre-image of an element may be empty. In fact, the pre-image
of an element is non-empty if and only if that element is in the image of
the function. We can also compute the pre-image of a set. For example,

f−1((−2, 6)) = (−
√

6,
√

6).

· For the floor function f : R→ Z given by f(x) = bxc, notice that Im(f) =
Z since every single integer is the image of at least one (in fact many) real
numbers. If we look at the pre-image of a single integer, say 4, we get
that f−1({4}) = [4, 5), since all numbers from 4 to 5 (including 4 but not
5) have that the largest integer less than or equal to it is 4.

· For the function f : A→ N that assigns to the n-th letter of the alphabet
the number n, we see that its image is the integers between 1 and 26.
Thus, Im(f) = {n ∈ N | 1 ≤ n ≤ 26}. If we investigate pre-images of
individual elements in N, we see that every n has at most 1 pre-image. In
fact, f−1({n}) has 1 element if and only if 1 ≤ n ≤ 26, and has 0 pre-
images if n = 0 or n > 26. Functions like this, where individual elements
have at most 1 pre-image, are known as injective functions and have the
property that distinct element in the domain are sent to distinct elements
in the co-domain.

3.1.4 Proofs about Images and Pre-images

Images and, in particular, pre-images are of importance in various fields of
Mathematics because they behave well under the various set theory operations.
In fact, pre-images of sets are used in Topology to define the continuity of
functions between general sets.

Recall that if f : S → T is a function and U ⊂ T , then the pre-image of U
under f is given by

f−1(U) = {s ∈ S | f(s) ∈ U}.

By saying that pre-images behave well under the various set theory operations,
we mean the following. If U, V ⊂ T , then

f−1
(
U
)

= f−1(U)

f−1(U ∪ V ) = f−1(U) ∪ f−1(V )

f−1(U ∩ V ) = f−1(U) ∩ f−1(V ).

Key to the above proves is the equivalence of x ∈ f−1(U) and f(x) ∈ U .
Below, we will prove the first two set equalities.

Proposition. Let f : S → T be a function and U ⊂ T . Then,

f−1(U) = f−1(U).

Discussion.

What we want: f−1
(
U
)

= f−1(U). Thus, we want to show two subset inclu-

sions: f−1
(
U
)
⊂ f−1(U) and f−1(U) ⊂ f−1

(
U
)
.

What we’ll do: For the first subset inclusion f−1
(
U
)
⊂ f−1(U), we will take

an element x ∈ f−1
(
U
)

and show that x ∈ f−1(U). Because x ∈ f−1
(
U
)
, we
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know that f(x) ∈ U . We will use this to show that x ∈ f−1(U) by showing that
x 6∈ f−1(U).

For the opposite inclusion f−1(U) ⊂ f−1
(
U
)
, we will take an x ∈ f−1(U).

Thus, x 6∈ f−1(U), and we will show that x ∈ f−1
(
U
)

by showing that f(x) ∈ U .

Proof. To show that f−1
(
U
)

= f−1(U), we will show the following two subset

inclusions: f−1
(
U
)
⊂ f−1(U) and f−1(U) ⊂ f−1

(
U
)
.

For the first subset inclusion, let x ∈ f−1
(
U
)
. Thus, f(x) ∈ U and f(x) 6∈

U . Since f(x) 6∈ U , then x is not mapped into U but is mapped into T ; so
x 6∈ f−1(U). Thus, x ∈ f−1(U). Thus, f−1

(
U
)
⊂ f−1(U).

For the second subset inclusion, let x ∈ f−1(U). Thus, x 6∈ f−1(U). So, it
is false that f(x) ∈ U . So, f(x) 6∈ U and thus f(x) ∈ U . Thus, by definition
x ∈ f−1

(
U
)
.

Thus, since we have shown both subset inclusions, we can conclude that
f−1(U) = f−1(U).

�

Proposition. Let f : S → T be a function and U, V ⊂ T . Then,

f−1(U ∪ V ) = f−1(U) ∪ f−1(V ).

Discussion.

What we want: f−1(U ∪ V ) = f−1(U) ∪ f−1(V ). Thus, we wish to show the
following two subset inclusions: f−1(U ∪ V ) ⊂ f−1(U) ∪ f−1(V ) and f−1(U) ∪
f−1(V ) ⊂ f−1(U ∪ V ).

What we’ll do: For the first subset inclusion f−1(U ∪V ) = f−1(U)∪ f−1(V ),
we will assume that x ∈ f−1(U ∪ V ), thus f(x) ∈ U ∪ V . Since f(x) is in a
union, we can break it up into two cases: f(x) ∈ U or f(x) ∈ V . In each case,
we will conclude that x ∈ f−1(U) ∪ f−1(V ).

For the second inclusion, f−1(U) ∪ f−1(V ) ⊂ f−1(U ∪ V ), we will assume
that x ∈ f−1(U) ∪ f−1(V ) and thus have the following two cases: x ∈ f−1(U)
or x ∈ f−1(V ). In each of the two cases, we will conclude that x ∈ f−1(U ∪ V )
by showing that f(x) ∈ U ∪ V .

Proof. To prove that f−1(U ∪ V ) = f−1(U) ∪ f−1(V ), we will prove the two
subset inclusions f−1(U ∪ V ) ⊂ f−1(U) ∪ f−1(V ) and f−1(U) ∪ f−1(V ) ⊂
f−1(U ∪ V ).

For the first subset inclusion, assume x ∈ f−1(U ∪ V ); thus, we have that
f(x) ∈ U ∪V . This means that f(x) ∈ U or f(x) ∈ V and we have two cases. If
f(x) ∈ U , then x ∈ f−1(U) and thus x ∈ f−1(U) ⊂ f−1(U) ∪ f−1(V ). For the
second case, we have that f(x) ∈ V and thus x ∈ f−1(V ). Thus, x ∈ f−1(V ) ⊂
f−1(U) ∪ f−1(V ). In either case, we have that x ∈ f−1(U) ∪ f−1(V ).

For the second subset inclusion, let x ∈ f−1(U)∪f−1(V ). Thus, x ∈ f−1(U)
or x ∈ f−1(V ), giving us two cases. In the first case, x ∈ f−1(U) and thus
f(x) ∈ U . So, f(x) ∈ U ⊂ U ∪ V and thus f(x) ∈ U ∪ V . This gives us that
x ∈ f−1(U ∪ V ). In the second case, x ∈ f−1(V ) and thus f(x) ∈ V . So,
f(x) ∈ V ⊂ U ∪ V and thus f(x) ∈ U ∪ V . This gives that x ∈ f−1(U ∪ V ).
In either case, x ∈ f−1(U ∪ V ) and so we have the subset inclusion f−1(U) ∪
f−1(V ) ⊂ f−1(U ∪ V ).

By proving both subset inclusions, we can conclude that f−1(U ∪ V ) =
f−1(U) ∪ f−1(V ).

�

4



3.2 Injections, Surjections, and Bijections

In general, functions between sets can get very complicated. In this section, we
investigate two types of functions which have particularly nice properties with
respect to their images and pre-images.

3.2.1 Definitions of an Injection and a Surjection

One part of the definition of a function is that for every element in the domain
s ∈ S, there exists some f(s) ∈ T . That means that every s gets maps to some
t and thus f(s) = t. However, in many functions, there are multiple different
values for s that will output exactly the same t. For example, in the function
f : R → R given by f(x) = x2, f(−3) = 9 and f(3) = 9. Functions where
this does not happen are particularly nice and are called injective or one-to-one
functions. These kinds of functions have the property that if s1 and s2 are
distinct elements, then their outputs f(s1) and f(s2) are also distinct elements.
In other words, if s1 6= s2, then f(s1) 6= f(s2). Given that there are many
negative statements in this definition, we can take the equivalent contrapositive
and arrive at a more helpful formulation. So, a function f : S → T is called
injective or one-to-one if whenever f(s1) = f(s2), then s1 = s2.

Another concern is that even though every s ∈ S must have some output
f(s) ∈ T , it is not guaranteed that every t ∈ T will have some pre-image. In
other words, we always know that Im(f) ⊂ T , but it is not always true that
Im(f) = T . In the case where the image is the entire co-domain T (in other
words, when every t has some pre-image), our function is called surjective or
onto. More formally, a function f : S → T is called surjective or onto if for
every t ∈ T , there exists some s ∈ S such that f(s) = t.

Below are some examples of functions and a discussion about their injectivity
and surjectivity.

· The function f : R → R given by f(x) = x2 is not injective since, as
stated above, f(−3) = 9 = f(3). Thus, it is not true that whenever
f(s1) = f(s2), then s1 = s2. In fact, if we tried to prove injectivity, we
would assume that f(s1) = f(s2) and thus s21 = s22; however, we would
not be able to conclude that s1 = s2. As for surjectivity, f(x) = x2 fails
this as well. Notice that −5 has no pre-image since there is no x such
that f(x) = x2 = −5. Non-surjectivity is also clear because Im(f) = {x ∈
R |x ≥ 0}, which is not the entire co-domain R.

· The floor function f : R → Z given by f(x) = bxc is not injective. To
see this, note that f(3) = 3 = f(π). In fact, non-injectivity should be
clear by the fact that the pre-image of a single natural number a will be
the set f−1({a}) = [a, a + 1), which contains infinitely many points. If
f were injective, then the pre-image of a point would contain at most 1
point. The floor function is indeed surjective. To show this, if we take
an arbitrary element in the co-domain a ∈ Z, then the real number a
maps to a. In other words, f(a) = bac and thus every a has at least one
pre-image. Surjectivity is also apparent because the pre-image of every
element in the co-domain is non-empty. Notice that, if we had presented
the floor function f : R → R as a function with a co-domain of R, then
the function would no longer be surjective because not every real number
has a pre-image.

· Recall the function f : A→ N, where A is the English alphabet, where f
takes the n-th letter of the alphabet to n ∈ N. This function f is injective
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because for every n ∈ N, there are either no pre-images (for example, there
is no 27-th letter of the alphabet) or there is 1 pre-image (for example,
there is only one 4-th letter, d). The function f is not surjective, though,
because, for example, 27 has no pre-image (as there is no 27-th letter of
the alphabet).

3.2.2 Proofs involving Injections and Surjections

The definition of an injection and a surjection gives us a framework for how to
go about proving that a function is or is not injective or surjective. We give
examples below.

· Consider the function f : R → R+ given by f(x) = ex, where R+ is the
set of all positive real numbers:

R+ = {x ∈ R |x > 0}.

We will show that f(x) is a surjection. To do this, we must take an
arbitrary element in the co-domain t ∈ R+ and find a pre-image in the
domain s ∈ R. Thus, s must satisfy the equation f(s) = es = t. If we
let s = ln t, then the equation should hold. Note that, since t > 0, we
are indeed allowed to take its logarithm. Thus, every t ∈ R+ has the
pre-image ln t ∈ R.

· We can also show that the f : R → R+ given above by f(x) = ex is
also injective. To do so, we will assume that f(s1) = f(s2) and conclude
that s1 = s2. Thus, we have that es1 = es2 . Taking logarithms of both
sides (which we are allowed to do since es > 0 for any s), we have that
ln es1 = ln es2 and thus s1 = s2, as desired.

· Consider again the function f : Z×Z→ Z given by f(m,n) = m · n. The
above function is clearly surjective since every n ∈ Z has a pre-image of
(n, 1) ∈ Z×Z (notice that (1, n) is also a valid pre-image). Injectivity, on
the other hand, fails. To show that a function is not injective, we need
only provide two distinct numbers that map to the same element. Take,
for example, (6, 4) and (2, 12); notice that f(6, 4) = 24 = f(2, 12), and
thus f is not injective. In fact, although this is not necessary, we can show
that any integer has multiple pre-images.

· Consider the function f : R 6=0 → R given by f(x) = 1
x , where R 6=0 is the

set of all non-zero real numbers. First, note that we chose our domain of
R 6=0 because the function is not defined at 0, but is defined at all other
reals. This function is injective, since if f(x) = f(y), then 1

x = 1
y , and,

cross-multiplying, we get that x = y. The function f , though, is not
surjective since 0 ∈ R has no pre-image because f(x) = 1

x = 0 has no
solution. It is important to point out, though, that if we had instead
thought of f as a function f : R 6=0 → R 6=0, then f would remain injective
and would also become surjective.

Injections and surjections behave particularly nicely under composition of
functions. Given two functions f : S → T and g : T → R, we can form the
composition function g ◦ f : S → R given by

g ◦ f(s) = g(f(s)).

This makes sense because, if s ∈ S, then f(s) ∈ T and thus we can apply the
function g to it, giving us g(f(s)), which is an element of R.
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We will now show that if f and g are both injective (resp., surjective), then
g ◦ f is also injective (resp., surjective). For injectivity, this is intuitively clear
since f maps distinct elements s1 6= s2 to distinct elements f(s1) 6= f(s2); since
g is also injective, the distinct element f(s1) 6= f(s2) are sent to distinct element
g(f(s1)) 6= g(f(s2)). Surjectivity follows the same scheme: any r ∈ R has a pre-
image in T , which is turn has a pre-image in S; this pre-image in S will be the
pre-image of r in the composition.

Proposition. Let S, T, and R be sets with functions f : S → T and g : T → R.
If f and g are both injective functions, then the composition g ◦ f : S → R is
also injective.

Discussion.

What we know:

· g : T → R is injective. Thus, whenever we know that g(t1) = g(t2), we
can conclude that t1 = t2.

· f : S → T is injective. Thus, whenever we know that f(s1) = f(s2), we
can conclude that s1 = s2.

What we want: g◦f : S → R is injective. Thus, we will assume that g(f(s1)) =
g(f(s2)) and show that s1 = s2.

What we’ll do: To show the above, we will first use the injectivity of g with
f(s1) playing the role of t1 and f(s2) playing the role of t2. Then, we will apply
the injectivity of f .

Proof. We will show that g◦f is injective by showing that whenever g(f(s1)) =
g(f(s2)) for s1, s2 ∈ S, we can conclude that s1 = s2.

If g(f(s1)) = g(f(s2)), then, since g is injective, its inputs are equal: f(s1) =
f(s2)). Since f is injective and f(s1) = f(s2), then s1 = s2, as desired. Thus,
the composition function g ◦ f is injective.

�

Proposition. Let S, T, and R be sets with functions f : S → T and g : T → R.
If f and g are both surjective, then the composition function g ◦ f : S → R is
also surjective.

Discussion.

What we know:

· g : T → R is surjective. Thus, for any r ∈ R, there exists a t ∈ T such
that g(t) = r.

· f : S → T is surjective. Thus, for any t ∈ T , there exists an s ∈ S such
that f(s) = t.

What we want: g ◦ f : S → R is surjective. So, we wish to show that for any
r ∈ R, there exists an s ∈ S such that g(f(s)) = r.

What we’ll do: We will let r ∈ R and use the surjectivity of g to find a pre-
image t ∈ T so that g(t) = r. Then, we will use the surjectivity of f to find
a pre-image s ∈ S for t so that f(s) = t. We will then check that, indeed
g(f(s)) = r.

Proof. To show that g ◦ f is surjective, we will take an element r ∈ R and find
an s ∈ S such that g(f(s)) = r.
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Let r ∈ R. Since g is surjective, there exists a t ∈ T such that g(t) = r.
Since t ∈ T and f is surjective, there exists an s ∈ S such that f(s) = t.
Notice that this s is a pre-image for r under the composition function since
g(f(s)) = g(t) = r. Thus, g ◦ f is surjective.

�

3.3 Bijections

On its own, an injection or a surjection is a very special kind of function. When
a function enjoys both properties, it exhibits a very rigid structure and gives us
much information about the domain and co-domain S and T . So, we define a
function f : S → T to be a bijection if it is both an injection and a surjection.

If f is a surjection, then for every t ∈ T , there exists at least one pre-image
s ∈ S such that f(s) = t. On the other hand, if f is a injection, then every
t ∈ T has at most one pre-image s ∈ S such that f(s) = t. In a bijection, both
of these properties hold, so we have that for every t ∈ T , there is exactly one
pre-image. So, a bijection f : S → T gives a correspondence between S and T
that makes them, in terms of their set-theoretic properties, identical.

In terms of the sizes or cardinalities of the sets S and T , if |S| gives the
number of element in S and |T | gives the number of elements in T , then we may
say the following about the relative sizes of S and T if S and T are finite sets.

· If f : S → T is an injection, then there must be at least as many elements
in T as there are in S since distinct elements in S must map to distinct
elements in T . So, |S| ≤ |T |.

· If f : S → T is a surjection, then there must be at least as many element
in S as there are in T since every t ∈ T needs at least one pre-image.
Thus, |S| ≥ |T |.

· If f : S → T is a bijection, then, combining the two inequalities above,
the number of elements in S must be equal to the number of elements in
T : |S| = |T |.

The above observations are clear for finite sets and they, in fact, give a formal
way for mathematicians to discuss cardinalities of sets even when the two sets
are infinite.

Below are some examples of bijections.

· Let S = {a, b, c} and T = {1, 2, 3}. The function f : S → T given by
f(a) = 2, f(b) = 1, and f(c) = 3 can be checked to be a bijection. Notice
that |S| = 3 = |T |, where the equality of cardinalities is a necessary
condition for the existence of a bijection.

· The function f : R → R+ given by f(x) = ex is a bijection. Both injec-
tivity and surjectivity were shown above.

· The function f : R+ → R given by f(x) = lnx is a bijection as well.
For surjectivity, note that if a ∈ R, then ea ∈ R+ is its pre-image since
f(ea) = ln ea = a. For injectivity, note that if f(s1) = f(s2), then ln(s1) =
ln(s2) and placing both sides of the equation in exponents base e yields
eln s1 = eln s2 , leaving us with our desired equation s1 = s2. Thus, f is
both surjective and injective and thus a bijection.

· The function f : R 6=0 → R 6=0 given by f(x) = 1
x is a bijection. We

previously proved that f was injective. We also proved that f was not
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surjective, but this is when we had a co-domain of R. With the co-domain
of R 6=0, we can see that f is indeed surjective since a ∈ R 6=0 has a pre-
image of 1

a because

f

(
1

a

)
=

1

1/a
= a.

Note that if we had kept R as our co-domain, our above proof would have
failed because 1

a is not defined if a 6= 0.

· For any set S, the identity function iS : S → S given by iS(s) = s for
all s ∈ S is a bijection. This function is called the identity because the
output s is identical to the input s. Injectivity comes from noting that
if iS(s1) = iS(s2), then, by definition of iS , s1 = s2. Surjectivity is also
clear since if s ∈ S, then it is its own pre-image since iS(s) = s. If S = R,
then the identity function on R is just the linear function f(x) = x.

Since composition of functions behave so nicely with respect to injectivity
and surjectivity, it stands to reason that the composition of two bijections is
a bijection. Indeed, this is the case, and the proof is straightforward given
that we have already shown that that injectivity and surjectivity persist under
composition of functions.

Theorem. Let f : S → T and g : T → R be bijections. Then, g ◦ f : S → R is
also a bijection.

Proof. To show that g ◦ f is a bijection, we must show that it is both injective
and surjective. Since f and g are bijections, they are both injective. Thus, by
our previous proposition, g ◦ f is also injective. Furthermore, since f and g are
bijections, they are both surjective. Thus, by our previous proposition, g ◦ f is
also surjective. Thus, g ◦ f is both injective and surjective and thus a bijection.

�

3.3.1 Invertibility of Bijections

In the previous examples, we saw that the two functions ex and lnx were both
bijections, the former as a function R→ R+ and the latter as a function R+ →
R. In fact, given that the function ex and lnx are known to “undo” each other,
a natural question to ask is, if a given f : S → T is a bijection, is its inverse
function f−1 : T → S a bijection as well?

Before we begin to answer the above question, we first need to see under
what conditions a function f : S → T is invertible. For such a function, its
inverse function is defined to be a function f−1 : T → S such that

f−1(f(s)) = s

for all s ∈ S. If we attempt to define such a function f−1, a good first attempt
would be as follows: if f(s) = t, then define f−1(t) = s. Such a function
would certainly have the desired property of being an inverse since f−1(f(s)) =
f−1(t) = s. Since we are defining this function from scratch, we must be sure it
is well-defined. The first concern is that, if f−1 is to be defined for every t ∈ T ,
then we must need for the equation f(s) = t to work for at least one s. In other
words, f must be a surjection. Similarly, we may have the problem that two
distinct element s1 6= s2 could map to t: f(s1) = t = f(s2); if this occurred,
then it would not be clear if we should define f−1(t) to be s1 or s2. If, however,
f is injective, then f−1 would be well-defined since whenever f−1(t) = s1 and
f−1(t) = s2, then by definition, f(s1) = t = f(s2) and, by the injectivity of f ,
s1 = s2.
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The above argument shows that if f : S → T is a bijection, then its inverse
f−1 : T → S can be defined. This still leaves us with the question of if f−1 is
also a bijection. The below proof shows that this is indeed true.

Proposition. Let f : S → T be a bijection. Then, its inverse function f−1 :
T → S given by f−1(t) = s if f(s) = t is also a bijection.

Discussion. Key to the below discussion is the interplay between f : S → T
and f−1 : T → S. Since f is a bijection, we already know that its inverse f−1

will be well-defined, and the relationship is given by f−1(t) = s if and only if
f(s) = t.

What we know: We know that f is a bijection. This is needed because this tells
us that f−1 exists. More subtle, but very important, is that f : S → T is a
well-defined function. Thus, f enjoys the following properties.

· Every s ∈ S has some output f(s) = t ∈ T .

· If f(s) = t1 and f(s) = t2, then t1 = t2.

What we want: We wish to show that f−1 : T → S is a bijection. Thus, we
will show that

· f−1 is injective. Thus, we need to show that whenever f−1(t1) = f−1(t2),
then t1 = t2.

· f−1 is surjective. Thus, for every s ∈ S, we must show that there exists
some t ∈ T such that f−1(t) = s.

What we’ll do: First, we will state that the function f−1 : T → S given in the
proposition is well-defined by our above arguments. To show injectivity of f−1,
we will assume that f−1(t1) = f−1(t2) and use the fact that f is well-defined
to show that t1 = t2. To show surjectivity, we will find a pre-image under f−1

for s ∈ S by noting that, as f is a function, f(s) is equal to some t ∈ T .

Proof. Since f is a bijection, our previous discussion indicates that the inverse
function f−1 : T → S given by f−1(t) = s when f(s) = t is well-defined.
We now need to show that f−1 is both injective and surjective for it to be a
bijection.

For injectivity, assume that f−1(t1) = f−1(t2); we will show that t1 = t2.
Give the common element f−1(t1) = f−1(t2) the name s ∈ S. Thus, f−1(t1) = s
and f−1(t2) = s. Then, by definition of f−1, f(s) = t1 and f(s) = t2. Since f
is a well-defined function, we can conclude that t1 = t2, as desired. Thus, f−1

is injective.
For surjectivity, let s ∈ S. Consider the element f(s) = t ∈ T . Since f is

a function, such a t exists. This t is the pre-image of s under f−1 since the
equation f(s) = t implies that f−1(t) = s. Thus, f−1 is surjective.

Since f−1 was shown to be a well-defined function that is both injective and
surjective, it is a bijection.

�

Thus, if we ever know that f : S → T is a bijection, then we should be able
to figure out its inverse f−1 : T → S. We do so below for the previous bijection
examples.

· The function f : {a, b, c} → {1, 2, 3} given by f(a) = 2, f(b) = 1, and
f(c) = 3 is clearly a bijection, and its inverse f−1 : {1, 2, 3} → {a, b, c} is
given by

f−1(1) = b, f−1(2) = a, f−1(3) = c,

which is also a bijection.
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· For f : R→ R+ given by f(x) = ex. its inverse is f−1 : R+ → R given by
f(x) = lnx, a bijection.

· For f : R+ → R given by f(x) = lnx, its inverse is f−1 : R → R+ given
by f−1(x) = ex. The relationship of this inverse to the previous example’s
inverse is generally true: if f is a bijective function and f−1 is its inverse,
then the inverse of f−1 is the original function f .

· For f : R 6=0 → R 6=0, given by f(x) = 1
x , its inverse is itself: f−1(x) = 1

x .
One can see that this is indeed the inverse since

f−1(f(x)) = f−1
(

1

x

)
=

1

1/x
= x.

· For the identity function iS : S → S, the inverse of the identity is again
the identity. Thus, i−1S (s) = s. To verify, we can see that

i−1S (iS(s)) = i−1S (s) = s.

Note that the notation for an inverse is almost identical to the notation
for the pre-image of a function. The distinction is important, but subtle. If
f : S → T is a bijection (and thus invertible), and f(s) = t, then its inverse is
given by f−1(t) = s, and the pre-image of t is given by f−1({t}) = {s}. The
difference is that the first equation is describing a function while the second
equation is describing set equality.
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