- 1. Interpret the regular expression.
 - (a) Strings with exactly one 1.
 - (b) Strings of even length.
 - (c) Strings in which 0s occur only in blocks of 3.
- 2. For these, especially part (c), equivalent answers may exist. Grade accordingly; compile a list of common correct answers as you go.
 - (a) $\Sigma^* 1 \Sigma^*$
 - (b) $0\Sigma^* 0 \cup 1\Sigma^* 1$
 - (c) $\Sigma(0^*10^*10^*)^*$
- 3. Generating function basics
 - (a) Rewriting our sequence as a generating function gives $1 + 0x + 3x^2 + 0x^3 + 9x^4 + \dots$ We see that this is a geometric series starting with 1 with common ratio $3x^2$, so our generating function in closed form is $\frac{1}{1-3x^2}$.
 - (b) Each decomposition of an arbitrary integer n into 2 positive integers k + (n-k) = n contributes $a_k b_{n-k}$ to the coefficient of x^n . Summing over all possible such decompositions gives us $c_n = \sum_{k=0}^n a_k b_{n-k}$.
 - (c) It is clear that $\frac{1}{1-x^c}$ is the generating function for c_n , the number of ways to make change with coins of value c cents. The generating function we're looking at is the product of the generating functions with $c \in \{1, 5, 10, 25\}$. By part (b), we see that the sequence for $\frac{1}{(1-x^{c_1})(1-x^{c_2})}$ is given by $(c_1c_2)_n = \sum_{k=0}^n a_k b_{n-k}$. This is indeed the number of ways to make change for n cents given coins of value c_1 and c_2 .
- 4. Generating functions and recurrence relations
 - (a) Let f(x) be the generating function for the Fibonacci sequence. Then f(x) satisfies $f(x) xf(x) x^2f(x) = (F_1 F_0)x + F_0$. Thus $f(x) = \frac{1}{1 x x^2}$.
 - (b) Letting $f(x) = \frac{1+x^2}{1+2x-x^3}$, $f(x) + 2xf(x) x^3f(x) = 1 + x^2$. Then coefficients of terms of degree $n \ge 3$ on the LHS must sum to zero, i.e. $F_n + 2F_{n-1} F_{n-3} = 0$, which gives the desired recurrence.
 - (c) We know that $(\Sigma a_n x^n)(c_0 + c_1 x + \dots + c_k x^k) = p(x)$. For n sufficiently large (n > d), $0x^n = (a_n c_0 + a_{n-1}c_1 + \dots + a_{n-k}c_k)x^n$. Therefore, $0 = a_n c_0 + a_{n-1}c_1 + \dots + a_{n-k}c_k$.
- 5. Let the generating function representing A be $f_A(x) = a_0 + a_1x + a_2x^2 + \ldots$ and B be $f_B(x) = b_0 + b_1x + b_2x^2 + \ldots$. Then the number of strings of length n in $A \circ B$ is the number of strings of length n formed from stings of length 0 in A and length n in B, the strings of length 1 in A and those of length n 1 in B, etc. so we see that c_n must be the sum

$$c_n = \sum_{k=0}^n a_k b_{n-k}$$

and thus our generating function for $A \circ B$ must be the product of the generating functions for A and B, $f_A(x) \cdot f_B(x)$.

6. As above, let the generating function representing A be $f_A(x) = a_0 + a_1x + a_2x^2 + \ldots$ and B be $f_B(x) = b_0 + b_1x + b_2x^2 + \ldots$ Consider the number of strings of length n in $A \cup B$. We can either have a string of length n from $f_A(x)$, of which we have a_n , or a string of length n from B, of which we have b_n . So we have $a_n + b_n$ ways to have a string of length n in our regular expression $A \cup B$, so our generating function must be $f_A(x) + f_B(x)$.

7. For any regular expression A, A^* consists of all of the product sets of elements in A, A^0 , A^1 , A^2 , ... We claim that the generating function of A^n is $[f_A(x)]^n$, where $f_A(x)$ is the generating function for A. We proceed by induction. Clearly the generating function of A is $f_A(x) = [f_A(x)]^1$, so this establishes our base case. Now assume for some $n \ge 1$ the statement holds: $[f_A(x)]^n$ is the generating function for A^n . Now consider the generating function for A_{n+1} : we can think of this as the concatenation of regular expressions A_n and A. By problem 6, this means our generating function must be $[f_A(x)]^{n+1}$. So our generating function in total is the union of all the generating functions for A^i ; by problem 5 this is

$$1 + f_A(x) + [f_A(x)]^2 + [f_A(x)]^3 + \dots$$

This a geometric series with first term 1 and common ratio $f_A(x)$, so our generating function for A^* is

$$\frac{1}{1 - f_A(x)}$$

- 8. Strings in which 0s appear only in odd blocks and 1s appear only in blocks of size 1 or 2.
- 9. Using the rules developed in (5-7), we can calculate the generating function to be

$$(1+x+x^2)\frac{1}{1-(\frac{1}{1-x^2})x(x+x^2)}\left(1+\left(\frac{1}{1-x^2}\right)x\right) = \frac{x^4-x^2-2x-1}{x^3+2x^2-1}$$

10. From 4(c) and the closed form found in 9, we know that a_n satisfies the recurrence relation:

$$-1a_n + 2a_{n-2} + a_{n-3} = 0$$