Regular Expressions

An alphabet is any nonempty finite set. One alphabet you probably know well is the modern English alphabet $\{a, b, \ldots, z\}$. For this problem, we'll use the much simpler alphabet $\Sigma=\{0,1\}$. A string is a finite sequence of symbols from the alphabet; for example, in our simple alphabet, possible strings are $0,01010,111$, etc. The length of a string is the number of symbols the string contains. Note that it is possible to have a string of length zero, called the empty string. Since it is hard to see a string with no symbols, we will denote the empty string with the symbol ε. Finally, a language is a set of strings over a given alphabet.
In arithmetic, we can use the operations + and \times to build up expressions such as $(5+3) \times 4$. The value of the arithmetic expression is the number 32. Just as + and \times are operations in arithmetic, we can use operations called regular operations to build expressions called regular expressions that describe a language. Given two languages A and B, these regular operations are:

- Union, denoted $\cup . A \cup B$ is the set of all strings that are in A or B (or possibly both).
- Concatenation, denoted o. $A \circ B$ is the set of strings $x y$, where x is any string in A and y is any string in B. For simplicity, we can often leave the o symbol out and simply write $A B$.
- Star, denoted *. A^{*} is the set of all strings $x_{1} x_{2} \ldots x_{k}$ for all $k \geq 0$, where each $x_{1}, x_{2}, \ldots, x_{k}$ is in A.

Let us provide some simple examples of regular expressions. Suppose we have two languages $A=$ $\{0\}, B=\{1\}$. Then $A \cup B=\{0,1\}, A \circ B=\{01\}$, and $A^{*}=\{\varepsilon, 0,00,000, \ldots\}$. Remembering our simple alphabet $\Sigma=\{0,1\}, \Sigma^{*}$ is the regular expression describing the language of all possible strings over Σ. Similarly, the regular expression $1 \Sigma^{*}$ (short for $1 \circ \Sigma^{*}$) describes the language of all strings starting with a $1 . \Sigma \Sigma \Sigma$ consists of all strings of length 3 .

1. Concisely interpret these regular expressions:
(a) $0^{*} 10^{*}$.
(b) $(\Sigma \Sigma)^{*}$.
(c) $1^{*}\left(0001^{*}\right)^{*}$.
2. Find regular expressions for the following languages:
(a) $\{w: w$ has at least one 1$\}$.
(b) $\{w: w$ starts and ends with the same symbol $\}$.
(c) $\{w:$ the sum of the digits of w, minus the first digit, is even $\}$.

Generating Functions

"A generating function is a clothesline on which we hang up a sequence of numbers for display." - Herbert Wilf, generatingfunctionology

To be precise, the generating function for the sequence a_{n} is the formal power series

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2} \ldots
$$

where the coefficient of x^{n} is a_{n}. (You might be worried about whether a generating function converges when you evaluate it at a specific value of x, but we won't be evaluating x for any values.)

For example,

$$
\frac{1}{1-x}=1+x+x^{2}+x^{3}+\cdots
$$

is the generating function for the sequence $(1,1,1 \ldots)$, defined by the relation $a_{n}=1$. Clearly, we like the expression on the left much better than the one on the right, because of its lack of reference to infinity; we call such a form closed form. The right hand side is called its series expansion.
3. Generating Function Basics
(a) Find the generating function for the sequence

$$
(1,0,3,0,9,0,27, \ldots)
$$

where $a_{2 n}=3^{n}, a_{2 n+1}=0$, and prove that your answer is correct.
(b) Let $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ and $g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ be the generating functions of a_{n} and b_{n}, respectively, and let their product be

$$
(f \cdot g)(x)=\left(a_{0}+a_{1} x+a_{2} x^{2}+\ldots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots\right)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots
$$

Find a closed-form formula for the coefficients c_{n}. (That is, find c_{n} as a function of the sequences a_{n} and b_{n})
(c) Let A_{n} be the number of ways to make change for n cents using pennies (1 cent), nickels (5 cents), dimes (10 cents), and quarters (25 cents). Show that

$$
\frac{1}{(1-x)\left(1-x^{5}\right)\left(1-x^{10}\right)\left(1-x^{25}\right)}
$$

is the generating function whose coefficients are A_{n}.
4. Generating Functions and Recurrence Relations
(a) Let the Fibonacci numbers be defined by the recurrence relation

$$
F_{n+2}=F_{n+1}+F_{n}, F_{0}=1, F_{1}=1
$$

Find a closed-form generating function for the Fibonacci numbers.
(b) Given the generating function

$$
f(x)=\frac{1+x^{2}}{1+2 x-x^{3}}
$$

find a recurrence relation for the series expansion of $f(x)$ and prove that your answer is correct.
(c) Given a generating function

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}=\frac{p(x)}{c_{0}+c_{1} x+c_{2} x^{2}+\ldots+c_{k} x^{k}}
$$

where $p(x)$ is a d-degree polynomial in x, prove that the coefficients of the generating function a_{n} satisfy the recurrence relation:

$$
c_{0} a_{n}+c_{1} a_{n-1}+c_{2} a_{n-2}+\cdots+c_{k} a_{n-k}=0 ; n>d, n \geq k
$$

Combining Regular Expressions and Generating Functions

We define the generating function of a regular expression to be the generating function for a sequence a_{n} of the number of strings of length n. For example, 1111 is $x^{4}, \epsilon \cup 00 \cup 01 \cup 11$ is $1+3 x^{2}$, and $0(\epsilon \cup 0 \cup 1 \cup 11) 0$ is $x^{2}+2 x^{3}+x^{4}$.
5. Let A and B be two regular expressions, and let $f_{A}(x)$ and $f_{B}(x)$ be their generating functions, respectively. Show that the generating function for $A \circ B$ is $f_{A}(x) \cdot f_{B}(x)$.
6. Let A and B be two regular expressions with $A \cap B=\emptyset$ (that is, A and B don't have any strings in common), and let $f_{A}(x)$ and $f_{B}(x)$ be their generating functions, respectively. Show that the generating function for $A \cup B$ is $f_{A}(x)+f_{B}(x)$.
7. Let A be a regular expression, and let $f_{A}(x)$ be its generating function. What is the generating function for A^{*} ?

Final Task

8. Concisely describe the language of strings described by the regular expression

$$
A=(\varepsilon \cup 1 \cup 11)\left((00)^{*} 0(1 \cup 11)\right)^{*}\left(\varepsilon \cup(00)^{*} 0\right)
$$

9. Find a generating function for A.
10. Find a recurrence relation for the number of strings in A of length n. (Don't worry about providing initial conditions.)
