
CHMMC 2023 Integration Bee Final Round Solutions

Problem 1.
∫ e

1

cos(lnx)
x

dx

Proposed by Brian Yang

Solution: sin(1)

We note that (ln(x))′ = 1/x, which implicates the u-substitution involving u= ln(x) and du= 1/x dx. Therefore,
we have the following equivalent integral.∫ e

1

cos(ln(x))
x

dx =
∫ 1

0
cos(u) du

We can integrate this regularly to get the following answer.∫ 1

0
cos(u) du = sin(u)

∣∣∣∣1
0
= sin(1)− sin(0) = sin(1)

Problem 2.
∫ cos(x)csc(x)

cot(x)
dx

Proposed by Jeck Lim

Solution: x+C

We expand each of the components in terms of cos(x) and sin(x) as follows.

∫ cos(x)csc(x)
cot(x)

dx =
∫ cos(x) ·

(
1

sin(x)

)
cos(x)
sin(x)

dx =
∫ cos(x)

sin(x)
cos(x)
sin(x)

dx =
∫

1 dx = x+C

Problem 3.
∫

sin(cos(cosx)) · sin(cos(x)) · sin(x) dx

Proposed by Jeck Lim

Solution: −cos(cos(cos(x)))+C

We note the nested trigonometric expressions, so we consider u = cos(cos(x)), as we have no neat way to
integrate this as an argument of sin. Thus, we have the following expression of du.

du =−sin(cos(x)) ·−sin(x) dx = sin(cos(x)) · sin(x) dx

These two components match up with the last two components of the integral, which produces the equivalent
integral as follows.∫

sin(cos(cosx)) · [sin(cos(x)) · sin(x) dx] =
∫

sin(u) du =−cos(u)+C

Substituting u, we have the final anti-derivative.

−cos(u)+C = −cos(cos(cos(x)))+C
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Problem 4.
∫ 1

−1
x2 · 3
√

x3 +1 dx

Proposed by Ritvik Teegavarapu

Solution:
3
√

2
2

We note that 3x2 = (x3 +1)′, so we can utilize a u-substitution.∫ 1

−1
x2 · 3
√

x3 +1 dx =⇒︸︷︷︸
u=x3+1

∫ 2

0

(
du
3

)
· 3
√

u =
1
3
·
∫ 2

0
u

1
3 du

Evaluating this integral, we have the following.

1
3
·
∫ 2

0
u

1
3 du =

1
3
· u

1
3+1

1
3 +1

∣∣∣∣2
0
=

1
3
· 3u

4
3

4

∣∣∣∣2
0
=

2
4
3

4
− 0

4
3

4
=

2 3
√

2
4

=
3
√

2
2

Problem 5.
∫ √

sec(x) · tan(x) dx

Proposed by Ritvik Teegavarapu

Solution: 2
√

sec(x)+C

We note that (sec(x))′ = sec(x) · tan(x), so we try to reform the integral into this form.∫ √
sec(x) · tan(x) ·

√
sec(x)√
sec(x)

dx =
∫ sec(x) · tan(x)√

sec(x)
dx

From here, we can utilize a u-substitution of u = sec(x) as follows.∫ sec(x) · tan(x)√
sec(x)

dx =⇒︸︷︷︸
u=sec(x)

∫ du√
u
=
∫

u
−1
2 du

This is a simple use of the power rule for integrals.∫
u

−1
2 du =

u
−1
2 +1

−1
2 +1

+C = 2u
1
2 +C = 2

√
sec(x)+C

Problem 6.
∫

eex+x dx

Proposed by Jeck Lim

Solution: eex
+C

Expanding the integral, we have the following.∫
eex+x dx =

∫
eex · ex dx
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We consider the u-substitution of u = ex, which also implies that du = ex dx. Therefore, we have the following.∫
eex · ex dx =

∫
eu du = eu +C = eex

+C

Problem 7.
∫ 10

1
elnx + lnex dx

Proposed by Jeck Lim

Solution: 99

Both of the components can be simplified as follows.

eln(x) = x ln(ex) = x

Thus, the integral becomes the following.∫ 10

1
elnx + lnex dx =

∫ 10

1
(x+ x) dx =

∫ 10

1
2x dx

Evaluating this integral, we have the following.

∫ 10

1
2x dx = x2

∣∣∣∣10

1
= 102 −12 = 100−1 = 99

Problem 8.
∫ 2023

−2023

sin(x)
x2 +1

dx

Proposed by Ritvik Teegavarapu

Solution: 0

Note that by the property of an odd function o(x), we have the following if integrating across symmetric
bounds. ∫ a

−a
o(x) dx = 0

We can clearly verify that the integrand is odd since sin(x) is odd and (x2 + 1) is even. This also means that
their quotient will also be odd. Therefore, we can use the aforementioned property as follows since we have
symmetric bounds. ∫ 2023

−2023

sin(x)
x2 +1

dx = 0

Problem 9.
∫ 1

0

x
x4 +1

dx

Proposed by Ritvik Teegavarapu

Solution:
π

8
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We consider re-writing x4 = (x2)2, which gives us appropriate motivation to consider a u-substitution of u = x2.
This implies that du = 2x dx and the following equivalent integral.

∫ 1

0

x
(x2)2 +1

dx =
∫ 1

0

(du
2

)
u2 +1

This is easily recognizable as the arc-tangent derivative, which allows us to simplify it as follows.

1
2
·
∫ 1

0

du
u2 +1

=
arctan(u)

2

∣∣∣∣1
0
=

arctan(1)
2

− arctan(0)
2

=
π

4
2
−0 =

π

8

Problem 10.
∫ dx

x ·
√

1− (ln(x))2

Proposed by Ritvik Teegavarapu

Solution: arcsin(ln(x))+C

We note that (ln(x))′ = 1/x, which implicates the u-substitution involving u= ln(x) and du= 1/x dx. Therefore,
we have the following equivalent integral.∫ dx

x ·
√

1− (ln(x))2
=
∫ du√

1−u2

This integral is easily recognizable as the derivative of arcsin(u), which gives us the following anti-derivative
upon substituting back into u. ∫ du√

1−u2
= arcsin(u)+C = arcsin(ln(x))+C

Problem 11.
∫ dx

ex + e−x

Proposed by Ritvik Teegavarapu

Solution: arctan(ex)+C

We can multiply the numerator and denominator by ex as follows.∫ dx
ex + e−x ·

ex

ex =
∫ ex dx

e2x +1

We can now consider the u-substitution of u = ex, which also implies that du = ex dx. Thus, the equivalent
integral is as follows which can be recognized as the derivative of arc-tangent.∫ ex dx

e2x +1
=
∫ du

u2 +1
= arctan(u)+C = arctan(ex)+C

Problem 12.
∫ 1

0
(x−1)2(x+1)2(x2 +1)2(x4 +1)2 dx
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Proposed by Ritvik Teegavarapu

Solution:
128
153

We can combine all of the components methodically as follows.

(x−1)2 · (x+1)2 = ((x−1)(x+1))2 = (x2 −1)2

(x2 −1)2 · (x2 +1)2 = ((x2 +1)(x2 −1))2 = (x4 −1)2

(x4 −1)2 · (x4 +1)2 = ((x4 −1)(x4 +1))2 = (x8 −1)2

Therefore, the integral becomes the following.

∫ 1

0
(x8 −1)2 dx =

∫ 1

0
x16 −2x8 +1 dx =

(
x17

17
− 2x9

9
+ x
)∣∣∣∣1

0

Evaluating, we have the following.(
x17

17
− 2x9

9
+ x
)∣∣∣∣1

0
=

(
1

17
− 2

9
+1
)
=

9
153

− 34
153

+
153
153

=
128
153

Problem 13.
∫ 3

1
3

ln(e⌊
1
x ⌋) dx

Proposed by Brian Yang

Solution:
5
6

We can simplify the integral using logarithm properties as follows.∫ 3

1
3

ln(e⌊
1
x ⌋) dx =

∫ 3

1
3

⌊
1
x

⌋
dx

We note that for any x > 1, this implies that 1/x < 1 and that the floor of this value will be 0. Therefore, we can
split the integral as follows, noting that the latter integral will evaluate to 0.∫ 3

1
3

⌊
1
x

⌋
dx =

∫ 1

1
3

⌊
1
x

⌋
dx+

∫ 3

1

⌊
1
x

⌋
dx =

∫ 1

1
3

⌊
1
x

⌋
dx

We note that on the interval of x ∈ [1/2,1], the integrand will evaluate to 1. Additionally, for x ∈ [1/3,1/2], the
integrand will evaluate to 2. Therefore, we have the following final answer.

∫ 1

1
3

⌊
1
x

⌋
dx =

∫ 1/2

1
3

2 dx+
∫ 1

1/2
1 dx = 2 ·

(
1
2
− 1

3

)
+1 ·

(
1− 1

2

)
=

5
6

Problem 14.
∫

∞

−∞

xe−x2

ln(x2 +2)
dx
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Proposed by Jeck Lim

Solution: 0

Note that by the property of an odd function o(x), we have the following if integrating across symmetric
bounds. ∫ a

−a
o(x) dx = 0

We can clearly verify that the integrand is odd since xe−x2
is odd and ln(x2 +2) is even. This also means that

their quotient will also be odd. Therefore, we can use the aforementioned property as follows since we have
symmetric bounds. ∫

∞

−∞

xe−x2

ln(x2 +2)
dx = 0

Problem 15.
∫ 3

0
⌈x⌉ · x⌈x⌉−⌊x⌋ dx

Proposed by Brian Yang

Solution:
611
12

We can split the integral into the intervals, namely [0,1], [1,2], and [2,3]. On each of these intervals, we
have that ⌈x⌉= {1,2,3} and ⌊x⌋= {0,1,2}, respectively. We can calculate each of the integrals as follows.

∫ 1

0
⌈x⌉ · x⌈x⌉−⌊x⌋ dx =

∫ 1

0
1 · x1 −0 dx =

∫ 1

0
x dx =

x2

2

∣∣∣∣1
0
=

1
2
−0 =

1
2

∫ 2

1
⌈x⌉ · x⌈x⌉−⌊x⌋ dx =

∫ 2

1
2 · x2 −1 dx =

(
2x3

3
− x
)∣∣∣∣2

1
=

10
3
−
(
−1
3

)
=

11
3∫ 3

2
⌈x⌉ · x⌈x⌉−⌊x⌋ dx =

∫ 2

1
3 · x3 −2 dx =

(
3x4

4
−2x

)∣∣∣∣3
2
=

229
4

−
(

32
4

)
=

187
4

Adding these together, we have the following.

1
2
+

11
3
+

187
4

=
6
12

+
44
12

+
561
12

=
611
12

Problem 16.
∫ 1

0
sin( 3

√
x) dx

Proposed by Ritvik Teegavarapu

Solution: 6sin(1)+3cos(1)−6

We now consider the substitution u = 3
√

x, which implies that du = 1
3 · x

−2
3 dx. Thus, we have the following.∫ 1

0
sin( 3

√
x) dx =

∫ 1

0
sin(u) · (3u2) du
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For this, we can use tabular integration as follows.

D : 3u2 =⇒ 6u =⇒ 6 =⇒ 0

I : sin(u) =⇒−cos(u) =⇒−sin(u) =⇒ cos(u) =⇒ sin(u)

Thus, our integral evaluates to the following.

I =−3u2 cos(u)+6usin(u)+6cos(u)
∣∣∣∣1
0

I = (−3(1)2 cos(1)+6(1)sin(1)+6cos(1))− (−3(0)2 cos(0)+6(0)sin(0)+6cos(0))

Simplifying, we have the following.

I = (−3cos(1)+6sin(1)+6cos(1))− (6cos(0)) = 6sin(1)+3cos(1)−6

Problem 17.
∫ 2π

0
max{sinx,cosx} dx

Proposed by Jeck Lim

Solution: 2
√

2

We note that sin(x) = cos(x) only at the values of x = π/4 and x = 5π/4. Thus, we can break up the inte-
gration at these points. It is trivial to verify that cos(x)> sin(x) on the intervals of [0,π/4] and [5π/4,2π], with
sin(x)> cos(x) on the remaining interval of [π/4,5π/4]. Thus, we have the following resulting integrals.∫ 2π

0
max{sinx,cosx} dx =

∫
π/4

0
cos(x) dx+

∫ 5π/4

π/4
sinx dx+

∫ 2π

5π/4
cos(x) dx

We evaluate each of these as follows.∫
π/4

0
cos(x) dx+

∫ 5π/4

π/4
sinx dx+

∫ 2π

5π/4
cos(x) dx = (sin(x))

∣∣∣∣π/4

0
+(−cos(x))

∣∣∣∣5π/4

π/4
+(sin(x))

∣∣∣∣2π

5π/4

This simplifies as follows.

(sin(x))
∣∣∣∣π/4

0
+(−cos(x))

∣∣∣∣5π/4

π/4
+(sin(x))

∣∣∣∣2π

5π/4
=

(√
2

2
−0

)
+

(√
2

2
− −

√
2

2

)
+

(
0− −

√
2

2

)
= 2

√
2

Problem 18.
∫

cos(x)csc(x)cot(x) dx

Proposed by Jeck Lim

Solution: −x− cot(x)+C

We can re-express the integral as follows.∫
cos(x) ·

(
1

sin(x)

)
· cot(x) dx =

∫
cot(x) · cot(x) dx =

∫
cot2(x) dx
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Using the Pythagorean Identity, we have that 1+ cot2(x) = csc2(x), which we can substitute and simplify as
follows. ∫

cot2(x) dx =
∫

csc2(x)−1 dx = −x− cot(x)+C

Problem 19.
∫ −x · e

−1
1−x2

(1− x2)2 dx

Proposed by Brian Yang

Solution:
e

−1
1−x2

2
+C

With the x on the outside of the exponential, we are motivated to consider the u-substitution of u = 1− x2.
This implies du =−2x dx, and we have the following equivalent integral.

∫ −x · e
−1

1−x2

(1− x2)2 dx =
∫ e

−1
u du
2u2

We can now utilize a secondary u-substitution, namely with v = −1/u. This would imply that dv = 1/u2 du,
and we have the following equivalent integral.

∫ e
−1
u du
2u2 =

∫ ev dv
2

=
ev

2
+C

We now undo the u-substitutions as follows.

ev

2
+C =

e
−1
u

2
+C =

e
−1

1−x2

2
+C

Problem 20.
∫ x

−1
2

1+ x
1
3

dx

Proposed by Ritvik Teegavarapu

Solution: 6x
1
6 −6arctan

(
x

1
6

)
+C

We see that there is a x1/2 and x1/3 present in the integrand. To make the integrand in terms of only whole
powers, we consider u = x1/6. This would make du as follows.

du =
1
6
· x−5/6 dx =

1
6
· (x1/6)−5 dx =

1
6
·u−5 dx =⇒ 6u5 du = dx

Substituting into the original integral, we have the following.

∫ x
−1
2

1+ x
1
3

dx =
∫ (

x
1
6

)−3

1+
(

x
1
6

)2 dx =
∫ u−3

1+u2 ·
(
6u5 du

)
=
∫ 6u2

u2 +1
du
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Factoring out the 6, we utilize the +0 trick, in which we add 1 and subtract 1 in an attempt to match the
denominator and split as follows.

6 ·
(∫

(u2 +1)−1
u2 +1

du
)
= 6 ·

(∫ u2 +1
u2 +1

du−
∫ 1

u2 +1
du
)
= 6 ·

(∫
1 du−

∫ 1
u2 +1

du
)

Both of these integrals are fairly simple to evaluate, but we must remember to substitute back in terms of x to
get the final answer.

6 ·
(∫

1 du−
∫ 1

u2 +1
du
)
= 6 ·u−6arctan(u)+C = 6x

1
6 −6arctan

(
x

1
6

)
+C

Problem 21.
∫ x2 + cos2(x)

(1+ x2)sin2(x)
dx

Proposed by Ritvik Teegavarapu

Solution: −arctan(x)− cot(x)+C

We begin by utilizing the +0 trick, in which we add 1 and subtract 1 in an attempt to match the denomina-
tor and split as follows.∫

(x2 +1)+(cos2(x)−1)
(1+ x2)sin2(x)

dx =
∫

(x2 +1)
(1+ x2)sin2(x)

dx+
∫ cos2(x)−1

(1+ x2)sin2(x)
dx

Simplifying, we have the following.∫
(x2 +1)

(1+ x2)sin2(x)
dx+

∫ cos2(x)−1
(1+ x2)sin2(x)

dx =
∫ 1

sin2(x)
dx+

∫ −sin2(x)
(1+ x2)sin2(x)

dx

∫ 1
sin2(x)

dx+
∫ −sin2(x)

(1+ x2)sin2(x)
dx =

∫
csc2(x) dx−

∫ 1
(1+ x2)

dx

Evaluating each of these integrals, we have the final answer as follows.∫
csc2(x) dx−

∫ 1
(1+ x2)

dx =−cot(x)− arctan(x)+C = −arctan(x)− cot(x)+C

Problem 22.
∫ e2x −1√

e3x + ex
dx

Proposed by Ritvik Teegavarapu

Solution: 2
√

ex + e−x +C or 2e−x
√

e3x + ex +C

We first begin by factoring out ex from the square root in the denominator as follows.∫ e2x −1√
e3x + ex

dx =
∫ e2x −1

ex ·
√

ex − e−x
dx =

∫ ex − e−x
√

ex + e−x
dx
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We note that the numerator is exactly the derivative of the argument in the square root. Thus, we let u= ex+e−x,
which implies du = ex − e−x dx and the following equivalent integral.∫ ex − e−x

√
ex + e−x

dx =
∫ du√

u
= 2

√
u+C = 2

√
ex + e−x +C = 2e−x

√
e3x + ex +C

Problem 23.
∫ sin(ln(x))

x3 dx

Proposed by Ritvik Teegavarapu

Solution:
cos(ln(x))+2sin(ln(x))

−5x2 +C

To remove the ln(x), we consider the substitution x = eu. This implies that dx = eu du, and the following
equivalent integral. ∫ sin(ln(x))

x3 dx =
∫ sin(ln(eu))

(eu)3 · (eu du) =
∫

sin(u) · e−2u du

We can use integration by parts on this, with a = sin(u) and db = e−2u du, which gives the following.∫
a db = ab−

∫
b da =

(
sin(u) · e−2u

−2

)
−
∫

cos(u) ·
(

e−2u

−2

)
du

Doing integration by parts on this integral again, with b= cos(u) and da= e−2u/(−2) du, we have the following.∫
b da = ab−

∫
a db =

(
cos(u) · e−2u

4

)
+
∫

sin(u) ·
(

e−2u

4

)
du

Note that 1/4 of the original integral has reappeared after this second application of integration by parts. Thus,
we have the following, where I is the value of the initial integral.

I =
(

sin(u) · e−2u

−2

)
−
∫

cos(u) ·
(

e−2u

−2

)
du =

(
sin(u) · e−2u

−2

)
−
((

cos(u) · e−2u

4

)
+

I
4

)
Combining the like terms of I, we have the following.

5I
4

=

(
sin(u) · e−2u

−2

)
−
(

cos(u) · e−2u

4

)
Substituting u in terms of x, which would be u = ln(x), we have the following equivalent form.

5I
4

=

(
sin(ln(x)) · e−2ln(x)

−2

)
−

(
cos(ln(x)) · e−2ln(x)

4

)
=

sin(ln(x))
−2x2 − cos(ln(x))

4x2 =
2sin(ln(x))

−4x2 − cos(ln(x))
4x2

Simplifying, we have the following.

I =
4
5
·
(

2sin(ln(x))+ cos(ln(x))
−4x2

)
=

cos(ln(x))+2sin(ln(x))
−5x2 +C
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Problem 24.
∫ 1

0
x · ln2(x) dx

Proposed by Ritvik Teegavarapu

Solution:
1
4

We can consider the substitution x = eu to remove the logarithm from the integrand as follows, noting that
this would also imply that dx = eu du.∫ 1

0
x · ln2(x) dx =

∫ 0

−∞

eu · (ln(eu))2 · (eu du) =
∫ 0

−∞

e2u ·u2 du

For this, we can use tabular integration as follows.

D : u2 =⇒ 2u =⇒ 2 =⇒ 0

I : e2u =⇒ e2u/2 =⇒ e2u/4 =⇒ e2u/8

Thus, our integral evaluates to the following.

I =
(

u2e2u

2
− (2u) · e2u

4
+

2 · e2u

8

)∣∣∣∣0
−∞

=

(
u2e2u

2
− (u) · e2u

2
+

e2u

4

)∣∣∣∣0
−∞

I =
(

e0

2
− 1 · e0

2
+

e0

4

)
− (0−0+0)

Simplifying, we have the following.

I =
(

1
2
− 1

2
+

1
4

)
− (0) =

1
4

Problem 25.
∫

x2 cos
(

1
x

)
+

x
3

sin
(

1
x

)
dx

Proposed by Brian Yang

Solution:
x3

3
cos
(

1
x

)
+C

We seek to manipulate the integrand in the form of a product rule, otherwise known as ( f g)′ = f ′g+ g′ f .
Since we see that there is a cos(1/x) and a sin(1/x) present in the integrand, we claim that g = cos(1/x).
Substituting this into our product rule equation, we have the following.(

f · cos
(

1
x

))′
= f ′ · cos

(
1
x

)
+ f ·

(
−sin

(
1
x

))
·
(
−1
x2

)
= f ′ · cos

(
1
x

)
+

f
x2 · sin

(
1
x

)
Noting the resemblance to the integrand, we let f = x3/3 to match with the second component, which works as
follows. (

x3

3
· cos

(
1
x

))′
=

(
x3

3

)′
· cos

(
1
x

)
+

x3

3
x2 · sin

(
1
x

)
= x2 · cos

(
1
x

)
+

x
3
· sin

(
1
x

)
11



Thus, we can integrate as follows.

∫
x2 cos

(
1
x

)
+

x
3

sin
(

1
x

)
=
∫ (x3

3
· cos

(
1
x

))′
=

x3

3
cos
(

1
x

)
+C

Problem 26.
∫ e

1
2ln(x)+(ln(x))2 dx

Proposed by Ritvik Teegavarapu

Solution: e

We seek to manipulate the integrand in the form of a product rule, otherwise known as ( f g)′ = f ′g+g′ f .∫ e

1
2ln(x)+(ln(x))2 dx =

∫ e

1

(
2 · ln(x)

x

)
· x+(ln(x))2 ·1 dx

We recognize as f (x) = ln2(x) and g(x) = x, meaning that f ′(x) = 2ln(x)
x and g′(x) = 1.∫ e

1

(
2 · ln(x)

x

)
· x+(ln(x))2 ·1 dx =

∫ e

1
f ′(x)g(x)+ f (x)g′(x) dx

∫ e

1
( f (x)g(x))′ = f (x)g(x)

∣∣∣∣e
1
= ln2(x) · x

∣∣∣∣e
1
= ln2(e) · e− ln2(1) ·1 = e

Problem 27.
∫ 3

0
max

{√
1− (x−1)2,

√
1− (x−2)2

}
dx

Proposed by Brian Yang

Solution:

√
3

4
+

π

6

The fastest approach to this integral is to solve it geometrically. The two functions represent semicircles (since
the square root results in a non-negative value), both with radius 1 and centered respectively at (1,0) and (2,0).

C1 : y =
√

1− (x−1)2 =⇒ (x−1)2 + y2 = 1

C2 : y =
√

1− (x−2)2 =⇒ (x−2)2 + y2 = 1

The two semi-circles intersect at x = 1.5, and have a shared area. Since we want the maximum of the two
functions across the interval, we note that C1 will be the maximum of the two on the interval of [1,1.5], and C2
will be the maximum of the two on the interval of [1.5,2].

Thus, it suffices to find the area and subtract from π . The area of the overlapping area A is composed of
two sectors and a triangle, which we calculate as follows.

A = [triangle]+2[sector]

12



The height of the triangle is calculated as
√

1− (1.5−1)2 =
√

1−0.52 =
√

0.75 =
√

3/2. The base of the
triangle is 1, since the semi-circles intersect the x-axis at x = 1 and x = 2. As for the area of the arcs, they
subtend an angle of π/6 with a radius of 1. Thus, we have the following calculation.

A =

√
3

2 ·1
2

+2 ·
(

1
2
· (1)2 · π

6

)
=

√
3

4
+2 ·

(
π

12

)
=

√
3

4
+

π

6

Problem 28.
∫ ex −1

ex +1
dx

Proposed by Brian Yang

Solution: 2ln(e−x +1)+ x+C or 2ln(ex +1)− x+C

We begin by utilizing the +0 trick, in which we add 2 and subtract −2 in an attempt to match the denomi-
nator and split as follows.∫

(ex −1+2)−2
ex +1

dx =
∫

(ex +1)−2
ex +1

dx =
∫ ex +1

ex +1
dx−

∫ 2
ex +1

dx =
∫

1 dx−
∫ 2

ex +1
dx

The first integral is trivial, but for the second integral, we consider multiplying both the numerator and denom-
inator by e−x as follows. ∫ 2

ex +1
· e−x

e−x dx =
∫ 2e−x

1+ e−x dx

We note that the derivative of the denominator is the numerator (ignoring the factor of 2). Thus, we consider
u = 1+ e−x, which implies du = −e−x dx and the following equivalent integral. Note that we remove the
absolute value sign because e−x +1 is never negative.∫ 2e−x

1+ e−x dx =
∫ −2 du

u
=−2ln |u|=−2ln(e−x +1)+C

Therefore, the final answer is as follows.∫
1 dx−

∫ 2
ex +1

dx = x− (−2ln(e−x +1))+C = 2ln(e−x +1)+ x+C

An equivalent form that can be formed is if you factor out e−x as follows.

2 ln(e−x(1+ ex))+ x+C = 2 · [ln(e−x)+ ln(1+ ex)]+ x+C = 2ln(1+ ex)−2x+ x+C = 2ln(ex +1)− x+C

Problem 29.
∫ 1

0
2⌊log2 x⌋ dx

Proposed by Jeck Lim

Solution:
1
3

We note for x ∈ [1/2,1], the following holds true regarding the floor function.

⌊log2 x⌋=−1

13



Thus, our integral becomes the following.∫ 1

0
2⌊log2 x⌋ dx =

∫ 1/2

0
2⌊log2 x⌋ dx+

∫ 1

1/2
2−1 dx =

∫ 1/2

0
2⌊log2 x⌋ dx+(2−1) ·

(
1− 1

2

)
=
∫ 1/2

0
2⌊log2 x⌋ dx+(2−1)2

We can repeat the same procedure for the first integral, noting that for x ∈ [1/4,1/2], the following holds true
regarding the floor function.

⌊log2 x⌋=−2

Thus, our integral becomes the following.∫ 1/2

0
2⌊log2 x⌋ dx=

∫ 1/4

0
2⌊log2 x⌋ dx+

∫ 1/2

1/4
2−2 dx=

∫ 1/4

0
2⌊log2 x⌋ dx+(2−1)·

(
1
2
− 1

4

)
=
∫ 1/4

0
2⌊log2 x⌋ dx+(2−2)2

We notice the pattern of the integrand in question, namely that we are adding the area of rectangles with height
2−i and length 2−i. Thus, the integral in question is equivalent to the following summation, which is a simple
geometric series. ∫ 1

0
2⌊log2 x⌋ dx =

∞

∑
i=1

(
2−i)2

=
∞

∑
i=1

(
1
4

)i

=
1
4

1− 1
4

=
1
4
3
4

=
1
3

Problem 30.
∫ 1

0

x2 −2x
x3 +1

dx

Proposed by Brian Yang

Solution: ln(2)− 2π
√

3
9

By partial fraction decomposition, we rewrite the integral as follows.∫ 1

0

x2 −2x
x3 +1

dx =
∫ 1

0

1
x+1

dx−
∫ 1

0

1
x2 − x+1

dx

For the left integral, it evaluates as follows.∫ 1

0

1
x+1

dx = [ln(x+1)]10 = ln2− ln1 = ln2

The right integral is simplified by completing the square.∫ 1

0

1
x2 − x+1

dx =
∫ 1

0

1(
x− 1

2

)2
+ 3

4

dx

Now we apply a u-substitution of u = 2x−1√
3

, which means du = 2√
3

dx:

∫ 1

0

1(
x− 1

2

)2
+ 3

4

dx =
∫ 1√

3

− 1√
3

√
3

2
(

3u2

4 + 3
4

) du =
2
√

3
3

∫ 1√
3

− 1√
3

1
u2 +1

du

We can directly compute the integral as follows.∫ 1√
3

− 1√
3

1
u2 +1

du = [arctan(u)]
1√
3

− 1√
3

=
π

6
−
(
−π

6

)
=

π

3
.

14



Thus, we can add all the results of the integrals as follows.

∫ 1

0

x2 −2x
x3 +1

dx = ln(2)− 2
√

3
3

·
(

π

3

)
= ln2− 2π

√
3

9

Problem 31.
∫

π/4

0

tan(x)+2sec2(x)+2tan(x)sec2(x)
tan(x)+ sec2(x)

dx

Proposed by Ritvik Teegavarapu

Solution:
π

4
+ ln(3)

We hope to manipulate the numerator to resemble the denominator. Splitting the 2sec2(x) = sec2(x)+ sec2(x),
we have the following.∫

π/4

0

(tan(x)+ sec2(x))+(sec2(x)+2tan(x)sec2(x))
tan(x)+ sec2(x)

dx=
∫

π/4

0

tan(x)+ sec2(x)
tan(x)+ sec2(x)

dx+
∫

π/4

0

sec2(x)+2tan(x)sec2(x)
tan(x)+ sec2(x)

dx

Simplifying, we have the following.∫
π/4

0

tan(x)+ sec2(x)
tan(x)+ sec2(x)

dx+
∫

π/4

0

sec2(x)+2tan(x)sec2(x)
tan(x)+ sec2(x)

dx=
∫

π/4

0
1 dx+

∫
π/4

0

sec2(x)+2tan(x)sec2(x)
tan(x)+ sec2(x)

dx

The first integral simplifies as follows. ∫
π/4

0
1 dx = x

∣∣∣∣π/4

0
=

π

4

For the second integral, we note that the numerator is indeed the derivative of the denominator, as we verify
below.

d
dx

(tan(x)+ sec2(x)) = sec2(x)+2sec(x) · (sec(x) tan(x)) = sec2(x)+2sec2(x) tan(x)

Thus, we consider u = tan(x)+ sec2(x), which transforms the integral as follows upon changing the bounds.

∫
π/4

0

sec2(x)+2tan(x)sec2(x)
tan(x)+ sec2(x)

dx =
∫ 3

1

du
u

= ln |u|
∣∣∣∣3
1
= ln(3)− ln(1) = ln(3)

Thus, the integral becomes the following by adding the results we obtained above.∫
π/4

0

tan(x)+2sec2(x)+2tan(x)sec2(x)
tan(x)+ sec2(x)

dx =
π

4
+ ln(3)

Problem 32.
∫ 1

0
(x6 + x4 + x2) ·

√
2x4 +3x2 +6 dx

Proposed by Ritvik Teegavarapu

Solution:
11
√

11
18
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The first instinct for this integral is to use a u-substitution. However, we see that the degree will not match if we
let u be the argument of the square root. Thus, we consider factoring out x from the expression (x6 + x4 + x2)
and bringing it inside the square root as follows.∫ 1

0
(x5 + x3 + x1) · (x) ·

√
2x4 +3x2 +6 dx =

∫ 1

0
(x5 + x3 + x1) ·

√
x2 · (2x4 +3x2 +6) dx

Simplifying, we have the following.∫ 1

0
(x5 + x3 + x1) ·

√
x2 · (2x4 +3x2 +6) dx =

∫ 1

0
(x5 + x3 + x1) ·

√
2x6 +3x4 +6x2 dx

If we now consider u = 2x6 +3x4 +6x2, we then get that du = 12x5 +12x3 +12x dx = 12(x5 +x3 +x) dx. This
is exactly a multiple of the expression outside the square root, so we perform the u-substitution and change the
bounds as follows.

∫ 1

0
(x6 + x4 + x2) ·

√
2x4 +3x2 +6 dx =

∫ 11

0

√
u

12
du =

1
12

· 2
3

u3/2
∣∣∣∣11

0
=

113/2

18
− 03/2

18
=

11
√

11
18

Problem 33.
∫ 3

0
(x2 +1) d⌊x⌋

Proposed by Ritvik Teegavarapu

Solution: 17

We begin by using integration by parts in order to remove the modified dx component, with u = x2 + 1 and
dv = d⌊x⌋. This implies that du = 2x dx and v = ⌊x⌋. Thus, we get the following equivalent expression as
follows. ∫ 3

0
(x2 +1) d⌊x⌋=

∫
u dv = uv−

∫
v du = (x2 +1)⌊x⌋

∣∣∣∣3
0
−
∫ 3

0
⌊x⌋(2x) dx

Evaluating the first portion, we get the following.

(x2 +1)⌊x⌋
∣∣∣∣3
0
= (32 +1)⌊3⌋− (02 +1)⌊0⌋= 10 ·3−1 ·0 = 30

As for the resulting integral, ⌊x⌋ will be an integer across the different intervals. Thus, we break up the integral
onto the respective intervals as follows.∫ 3

0
⌊x⌋(2x) dx =

∫ 1

0
⌊x⌋(2x) dx+

∫ 2

1
⌊x⌋(2x) dx+

∫ 3

2
⌊x⌋(2x) dx

We note that ⌊x⌋= {0,1,2} on the given intervals, respectively. Substituting this in, we have the following.∫ 1

0
⌊x⌋(2x) dx =

∫ 1

0
0 · (2x) dx = 0

∫ 2

1
⌊x⌋(2x) dx =

∫ 2

1
2x dx = x2

∣∣∣∣2
1
= 22 −12 = 3

16



∫ 3

2
⌊x⌋(2x) dx =

∫ 3

2
2 ·2x = 2x2

∣∣∣∣3
2
= 2(3)2 −2(2)2 = 18−8 = 10

Thus, the final integral becomes the following.

30−
∫ 3

0
⌊x⌋(2x) dx = 30− (0+3+10) = 30−13 = 17

Problem 34.
∫

π

0

1− sinx
1+ sinx

dx

Proposed by Jeck Lim

Solution: 4−π

We immediately consider multiplying by the conjugate of 1 − sin(x), which is 1 + sin(x). This will force
the use of the Pythagorean identity in the denominator as follows.∫

π

0

1− sin(x)
1+ sin(x)

· 1− sin(x)
1− sin(x)

dx =
∫

π

0

(1− sin(x))2

1− sin2(x)
dx =

∫
π

0

1−2sin(x)+ sin2(x)
cos2(x)

dx

Dividing each of the components by cos2(x), we get the following.∫
π

0

1−2sin(x)+ sin2(x)
cos2(x)

dx =
∫

π

0
sec2(x)−2tan(x)sec(x)+ tan2(x) dx

Re-expressing tan2(x) = sec2(x)−1 to bring the terms of the integrand in terms of sec2(x), we have the follow-
ing. ∫

π

0
sec2(x)−2tan(x)sec(x)+(sec2(x)−1) dx =

∫
π

0
2sec2(x)−2tan(x)sec(x)−1 dx

These are simple trigonometric anti-derivatives, which are shown below.∫
π

0
2sec2(x)−2tan(x)sec(x)−1 dx = (2tan(x)−2sec(x)− x)

∣∣∣∣π
0

Simplifying, we have the following.

(2tan(x)−2sec(x)−x)
∣∣∣∣π
0
=(2tan(π)−2sec(π)−π)−(2tan(0)−2sec(0)−0)= (0−(−2)−π)−(0−2−0)= 4−π

Problem 35.
∫ e3x(6x−5)

(2x−1)2 dx

Proposed by Ritvik Teegavarapu

Solution:
e3x

2x−1
+C

We seek to manipulate the integrand in the form of a product rule, otherwise known as ( f g)′ = f ′g+ g′ f .

17



Since we see that there is a e3x present in the integrand, we claim that g = e3x. This is because upon taking
derivative, e3x will still be present Substituting this into our product rule equation, we have the following.(

f · e3x)′ = f ′ · e3x + f ·3e3x = e3x · ( f ′+3 f )

Since this must match the integrand, we have the following.

e3x(6x−5)
(2x−1)2 = e3x · ( f ′+3 f ) =⇒ 6x−5

(2x−1)2 = f ′+3 f

We begin by utilizing the +0 trick, in which we add 2 and subtract −2 in an attempt to match the denominator
and split as follows.

6x−5+2−2
(2x−1)2 =

(6x−3)−2
(2x−1)2 =

3(2x−1)−2
(2x−1)2 =

3(2x−1)
(2x−1)2 − 2

(2x−1)2 =
3

2x−1
− 2

(2x−1)2 = f ′+3 f

From this, it is clear that we select f = 1/(2x−1). We now verify that the derivative is as follows.

f ′ = ((2x−1)−1)′ =−((2x−1)−2) ·2 =
−2

(2x−1)2

Thus, we now have the desired product rule, which we can integrate as follows.

∫ e3x(6x−5)
(2x−1)2 dx =

∫ ( 1
2x−1

· e3x
)′

dx =
e3x

2x−1
+C

Problem 36.
∫ 2

1

9x+4
x5 +3x2 + x

dx

Proposed by Ritvik Teegavarapu

Solution: ln
(

80
23

)
We begin by doing partial fraction decomposition on the integrand as follows.∫ 2

1

9x+4
x · (x4 +3x+1)

dx =
∫ 2

1

A
x
+

Bx3 +Cx2 +Dx+E
x4 +3x+1

dx

Cross multiplying, we have the following.

9x+4 = A(x4 +3x+1)+ x · (Bx3 +Cx2 +Dx+E) = (A+B)x4 +Cx3 +Dx2 +(3A+E)x+A

Matching the polynomial components, it is clear that A = 4, B = −4, C = 0, D = 0, and E = −3. Thus, our
integral becomes the following.∫ 2

1

A
x
+

Bx3 +Cx2 +Dx+E
x4 +3x2 +1

dx =
∫ 2

1

4
x
+

−4x3 −3
x4 +3x+1

dx =
∫ 2

1

4
x

dx−
∫ 2

1

4x3 +3
x4 +3x+1

dx

The first integral is trivial to evaluate as follows.∫ 2

1

4
x

dx = 4ln |x|
∣∣∣∣2
1
= 4ln(2)−4ln(1) = ln(24)−0 = ln(16)
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For the second integral, we realize that the numerator is indeed the derivative of the denominator. Thus, we
consider the u-substitution of u = x4 + 3x+ 1, which implies that du = 4x3 + 3. Thus, we have the following
equivalent integral.∫ 2

1

4x3 +3
x4 +3x+1

dx =
∫ (2)4+3(2)+1

(1)4+3(1)+1

du
u

=
∫ 23

5

du
u

= ln |u|
∣∣∣∣23

5
= ln(23)− ln(5) = ln

(
23
5

)
Thus, the final result of the integral becomes the following.

∫ 2

1

4
x

dx−
∫ 2

1

4x3 +3
x4 +3x+1

dx = ln(16)− ln
(

23
5

)
= ln

(
16
23
5

)
= ln

(
16 ·5

23

)
= ln

(
80
23

)

Problem 37.
∫

ln(x2 +1) dx

Proposed by Jeck Lim

Solution: x · ln(x2 +1)−2x+2arctan(x)+C

We begin by utilizing integration by parts, with u = ln(x2 + 1) and dv = dx. Thus, we have the following
equivalent expression. ∫

u dv = uv−
∫

v du = ln(x2 +1) · x−
∫ x ·2x

x2 +1
dx

For the integral, we factor out the 2, we utilize the +0 trick, in which we add 1 and subtract 1 in an attempt to
match the denominator and split as follows.

2 ·
(∫

(x2 +1)−1
x2 +1

dx
)
= 2 ·

(∫ x2 +1
x2 +1

dx−
∫ 1

x2 +1
dx
)
= 2 ·

(∫
1 dx−

∫ 1
x2 +1

dx
)

Both of these integrals are fairly simple to evaluate, but we must remember to substitute back in terms of x to
get the final answer.

2 ·
(∫

1 dx−
∫ 1

x2 +1
dx
)
= 2x−2arctan(x)+C

Thus, the final integral becomes the following.

ln(x2 +1) · x−
∫ x ·2x

x2 +1
dx = x ln(x2 +1)− (2 · x−2arctan(x))+C = x · ln(x2 +1)−2x+2arctan(x)+C

Problem 38.
∫

(x2 +1)(x2 +4)
(x2 +2)(x2 +3)

dx

Proposed by Ritvik Teegavarapu

Solution: x−
√

2 · arctan
(

x√
2

)
+

2√
3
· arctan

(
x√
3

)
Expanding the numerator and denominator, we have the following.∫

(x2 +1)(x2 +4)
(x2 +2)(x2 +3)

=
∫ x4 +5x2 +4

x4 +5x2 +6

19



We begin by utilizing the +0 trick, in which we add 2 and subtract −2 in an attempt to match the denominator
and split as follows.∫

(x4 +5x2 +4+2)−2
x4 +5x2 +6

dx =
∫

(x4 +5x2 +6)−2
x4 +5x2 +6

dx =
∫ x4 +5x2 +6

x4 +5x2 +6
dx−

∫ 2
x4 +5x2 +6

dx

Simplifying, we have the following.∫ x4 +5x2 +6
x4 +5x2 +6

dx−
∫ 2

x4 +5x2 +6
dx =

∫
1 dx−

∫ 2
x4 +5x2 +6

dx = x+
∫ −2

x4 +5x2 +6
dx

We begin by doing partial fraction decomposition on the integrand as follows.∫ −2
x4 +5x2 +6

dx =
∫ Ax+B

x2 +2
+

Cx+D
x2 +3

dx

Cross multiplying, we have the following.

−2 = (Ax+B)(x2 +3)+(Cx+D)(x2 +2) = (A+C)x3 +(B+D)x2 +(3A+2C)x+(3B+2D)

Since A+C = 0 and 3A+2C = 0, it must be the case that A =C = 0. Additionally, we are told that B+D = 0
and 3B+2D = 2, which implies that D = 2 and B =−2. Thus, we have the following equivalent integral.∫ −2

x4 +5x2 +6
dx =

∫ −2
x2 +2

+
2

x2 +3
dx =

∫ −2
x2 +2

dx+
∫ 2

x2 +3
dx

We can calculate each of these integrals as follows, using their resemblance to the derivative of arctan(x).∫ −2
x2 +2

· 1/2
1/2

dx =
∫ −1

x2

2 +1
dx =

∫ −1(
x√
2

)2
+1

dx =
√

2 · arctan
(

x√
2

)
+C

∫ 2
x2 +3

· 1/3
1/3

dx =
∫ 2/3

x2

3 +1
dx =

∫ 2/3(
x√
3

)2
+1

dx =
2√
3
· arctan

(
x√
3

)
+C

Thus, the integral becomes the following.

x+
∫ −2

x4 +5x2 +6
dx = x−

√
2 · arctan

(
x√
2

)
+

2√
3
· arctan

(
x√
3

)

Problem 39.
∫ 1

0
⌊log2023 x⌋ dx

Proposed by Brian Yang

Solution: −2023
2022

We note for x ∈ [1/2023,1], the following holds true regarding the floor function.

⌊log2023 x⌋=−1
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Thus, our integral becomes the following.∫ 1

0
⌊log2023 x⌋ dx =

∫ 1/2023

0
⌊log2023 x⌋ dx+

∫ 1

1/2023
−1 dx =

∫ 1/2023

0
⌊log2023 x⌋ dx+(−1) ·

(
1− 1

2023

)
∫ 1

0
⌊log2023 x⌋ dx =

∫ 1/2023

0
⌊log2023 x⌋ dx+(−1) ·

(
1− 1

2023

)
=
∫ 1/2023

0
⌊log2023 x⌋ dx+

−2022
2023

We can repeat the same procedure for the first integral, noting that for x ∈ [1/20232,1/2023], the following
holds true regarding the floor function.

⌊log2023 x⌋=−2

Thus, our integral becomes the following.∫ 1/2023

0
⌊log2023 x⌋ dx=

∫ 1/20232

0
⌊log2023 x⌋ dx+

∫ 1/2023

1/20232
−2 dx=

∫ 1/20232

0
⌊log2023 x⌋ dx+(−2)·

(
1

2023
− 1

20232

)
∫ 1/2023

0
⌊log2023 x⌋ dx=

∫ 1/20232

0
⌊log2023 x⌋ dx+(−2)·

(
1

2023
− 1

20232

)
=
∫ 1/20232

0
⌊log2023 x⌋ dx+

−2 ·2022
20232

We notice the pattern of the integrand in question, namely that we are adding the area of rectangles with height
−i and length (2022)/(2023)i. Thus, the integral in question is equivalent to the following summation, which
is a simple geometric series.

I =
∫ 1

0
⌊log2023 x⌋ dx =

∞

∑
i=1

(−i) · 2022
2023i = (−2022) ·

∞

∑
i=1

i
2023i = (−2022) ·S

If we let S be the summation, we consider multiplying by 1/2023 and subtracting as follows.

S =
1

2023
+

2
20232 +

3
20233 + · · ·

S
2023

=
1

20232 +
2

20233 +
3

20234 + · · ·

2022S
2023

=
1

2023
+

(
2

20232 −
1

20232

)
+

(
3

20233 −
2

20233

)
=

1
2023

+
1

20232 +
1

20233 + · · ·

2022S
2023

=
1

2023

1− 1
2023

=
1

2023
2022
2023

=
1

2022
=⇒ S =

2023
20222

Substituting this for our summation, we have the following.

I = (−2022) ·S =−2022 ·
(

2023
20222

)
=

−2023
2022

Problem 40.
∫ x−1√

2x2 −3
dx

Proposed by Ritvik Teegavarapu
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Solution:

√
2x2 −3

2
−

ln
∣∣∣∣√ 2x2

3 −1+
√

6·x√
3

∣∣∣∣
√

2
+C or

√
2x2 −3

2
− ln |

√
2x2 −3+

√
2x|√

2
+C

We begin by splitting the integral as follows.∫ x−1√
2x2 −3

dx =
∫ x√

2x2 −3
dx−

∫ 1√
2x2 −3

dx

The first integral can be solved using a u-substitution of u = 2x2 −3, which implies du = 4x dx as follows.∫ x√
2x2 −3

dx =
∫ du

4
√

u
=

√
u

2
+C =

√
2x2 −3

2
+C

For the second integral, we consider the trigonometric substitution of x =
√

3sec(θ)/
√

2, which implies that
dx = (

√
3sec(θ) tan(θ))/

√
2 dθ . Therefore, we have the following equivalent integral.∫ 1√

2x2 −3
dx =

∫ 1√
2
(√

3sec(θ)√
2

)2
−3

·
√

3sec(θ) tan(θ)√
2

dθ =
∫ √

3sec(θ) tan(θ)√
2 ·
√

3sec2(θ)−3
dθ

Simplifying using the Pythagorean identity, we have the following.∫ √
3sec(θ) tan(θ)√

2 ·
√

3sec2(θ)−3
dθ =

∫ √
3sec(θ) tan(θ)√
2 ·

√
3tan(θ)

=
∫ 1√

2
· sec(θ) dθ

Thus, the integral becomes as follows.∫ 1√
2
· sec(θ) dθ =

ln |sec(θ)+ tan(θ)|√
2

+C

We need to re-formulate the answer in terms of x, so we can relate the angles as follows.

tan2(θ)+1 = sec2(θ)

tan2(θ)+1 =

(√
6

3
· x

)2

=⇒ tan(θ) =

√
2x2

3
−1

Thus, the second integral becomes the following.

ln |sec(θ)+ tan(θ)|√
2

+C =

ln
∣∣∣∣√ 2x2

3 −1+
√

6·x√
3

∣∣∣∣
√

2
+C

Thus, the final answer is as follows.

∫ x−1√
2x2 −3

dx =
∫ x√

2x2 −3
dx−

∫ 1√
2x2 −3

dx =

√
2x2 −3

2
−

ln
∣∣∣∣√2x2

3 −1+
√

6·x√
3

∣∣∣∣
√

2
+C
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This can be simplified by factoring out the
√

3 from the ln() inside the second portion of the anti-derivative as
follows.

√
2x2 −3

2
−

ln
∣∣∣√3 ·

√
2x2 −3+

√
3 · (

√
2 · x)

∣∣∣
√

2
+C =

√
2x2 −3

2
−

ln
∣∣∣√2x2 −3+(

√
2 · x)

∣∣∣
√

2
− ln(

√
3)+C

Since ln(
√

3) is a constant, it can be absorbed into the constant of integration, which results in the equivalent
form.

√
2x2 −3

2
−

ln
∣∣∣√2x2 −3+(

√
2 · x)

∣∣∣
√

2
− ln(

√
3)+C =

√
2x2 −3

2
− ln |

√
2x2 −3+

√
2x|√

2
+C

23


