

CHMMC 2023 Integration Bee Final Round Solutions

Problem 1. $\int_{1}^{e} \frac{\cos (\ln x)}{x} \mathrm{dx}$

Proposed by Brian Yang

Solution: $\sin (1)$

We note that $(\ln (x))^{\prime}=1 / x$, which implicates the u-substitution involving $u=\ln (x)$ and du $=1 / x \mathrm{dx}$. Therefore, we have the following equivalent integral.

$$
\int_{1}^{e} \frac{\cos (\ln (x))}{x} d x=\int_{0}^{1} \cos (u) d u
$$

We can integrate this regularly to get the following answer.

$$
\int_{0}^{1} \cos (u) d u=\left.\sin (u)\right|_{0} ^{1}=\sin (1)-\sin (0)=\sin (1)
$$

Problem 2. $\int \frac{\cos (x) \csc (x)}{\cot (x)} \mathrm{dx}$
Proposed by Jeck Lim
Solution: $x+C$

We expand each of the components in terms of $\cos (x)$ and $\sin (x)$ as follows.

$$
\int \frac{\cos (x) \csc (x)}{\cot (x)} \mathrm{dx}=\int \frac{\cos (x) \cdot\left(\frac{1}{\sin (x)}\right)}{\frac{\cos (x)}{\sin (x)}} \mathrm{dx}=\int \frac{\frac{\cos (x)}{\sin (x)}}{\frac{\cos (x)}{\sin (x)}} \mathrm{dx}=\int 1 \mathrm{dx}=x+C
$$

Problem 3. $\int \sin (\cos (\cos x)) \cdot \sin (\cos (x)) \cdot \sin (x) d x$

Proposed by Jeck Lim

Solution: $-\cos (\cos (\cos (x)))+C$

We note the nested trigonometric expressions, so we consider $u=\cos (\cos (x))$, as we have no neat way to integrate this as an argument of sin. Thus, we have the following expression of du.

$$
d u=-\sin (\cos (x)) \cdot-\sin (x) d x=\sin (\cos (x)) \cdot \sin (x) d x
$$

These two components match up with the last two components of the integral, which produces the equivalent integral as follows.

$$
\int \sin (\cos (\cos x)) \cdot[\sin (\cos (x)) \cdot \sin (x) d x]=\int \sin (u) d u=-\cos (u)+C
$$

Substituting u, we have the final anti-derivative.

$$
-\cos (u)+C=-\cos (\cos (\cos (x)))+C
$$

Problem 4. $\int_{-1}^{1} x^{2} \cdot \sqrt[3]{x^{3}+1} d x$

Proposed by Ritvik Teegavarapu

Solution: $\frac{\sqrt[3]{2}}{2}$
We note that $3 x^{2}=\left(x^{3}+1\right)^{\prime}$, so we can utilize a u-substitution.

$$
\int_{-1}^{1} x^{2} \cdot \sqrt[3]{x^{3}+1} \mathrm{dx} \underset{u=x^{3}+1}{\Longrightarrow} \int_{0}^{2}\left(\frac{d u}{3}\right) \cdot \sqrt[3]{u}=\frac{1}{3} \cdot \int_{0}^{2} u^{\frac{1}{3}} \mathrm{du}
$$

Evaluating this integral, we have the following.

$$
\frac{1}{3} \cdot \int_{0}^{2} u^{\frac{1}{3}} \mathrm{du}=\left.\frac{1}{3} \cdot \frac{u^{\frac{1}{3}+1}}{\frac{1}{3}+1}\right|_{0} ^{2}=\left.\frac{1}{3} \cdot \frac{3 u^{\frac{4}{3}}}{4}\right|_{0} ^{2}=\frac{2^{\frac{4}{3}}}{4}-\frac{0^{\frac{4}{3}}}{4}=\frac{2 \sqrt[3]{2}}{4}=\frac{\sqrt[3]{2}}{2}
$$

Problem 5. $\int \sqrt{\sec (x)} \cdot \tan (x) \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $2 \sqrt{\sec (x)}+C$
We note that $(\sec (x))^{\prime}=\sec (x) \cdot \tan (x)$, so we try to reform the integral into this form.

$$
\int \sqrt{\sec (x)} \cdot \tan (x) \cdot \frac{\sqrt{\sec (x)}}{\sqrt{\sec (x)}} \mathrm{dx}=\int \frac{\sec (x) \cdot \tan (x)}{\sqrt{\sec (x)}} \mathrm{dx}
$$

From here, we can utilize a u-substitution of $u=\sec (x)$ as follows.

$$
\int \frac{\sec (x) \cdot \tan (x)}{\sqrt{\sec (x)}} \mathrm{dx} \underset{u=\sec (x)}{\Longrightarrow} \int \frac{\mathrm{du}}{\sqrt{u}}=\int u^{\frac{-1}{2}} \mathrm{du}
$$

This is a simple use of the power rule for integrals.

$$
\int u^{\frac{-1}{2}} \mathrm{du}=\frac{u^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}+C=2 u^{\frac{1}{2}}+C=2 \sqrt{\sec (x)}+C
$$

Problem 6. $\int e^{e^{x}+x} \mathrm{dx}$
Proposed by Jeck Lim
Solution: $e^{e^{x}}+C$
Expanding the integral, we have the following.

$$
\int e^{e^{x}+x} \mathrm{dx}=\int e^{e^{x}} \cdot e^{x} \mathrm{dx}
$$

We consider the u-substitution of $u=e^{x}$, which also implies that $\mathrm{du}=e^{x} \mathrm{dx}$. Therefore, we have the following.

$$
\int e^{e^{x}} \cdot e^{x} \mathrm{dx}=\int e^{u} \mathrm{du}=e^{u}+C=e^{e^{x}}+C
$$

Problem 7. $\int_{1}^{10} e^{\ln x}+\ln e^{x} \mathrm{dx}$
Proposed by Jeck Lim
Solution: 99
Both of the components can be simplified as follows.

$$
e^{\ln (x)}=x \quad \ln \left(e^{x}\right)=x
$$

Thus, the integral becomes the following.

$$
\int_{1}^{10} e^{\ln x}+\ln e^{x} \mathrm{dx}=\int_{1}^{10}(x+x) \mathrm{dx}=\int_{1}^{10} 2 x \mathrm{dx}
$$

Evaluating this integral, we have the following.

$$
\int_{1}^{10} 2 x \mathrm{dx}=\left.x^{2}\right|_{1} ^{10}=10^{2}-1^{2}=100-1=99
$$

Problem 8. $\int_{-2023}^{2023} \frac{\sin (x)}{x^{2}+1} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: 0
Note that by the property of an odd function $o(x)$, we have the following if integrating across symmetric bounds.

$$
\int_{-a}^{a} o(x) \mathrm{dx}=0
$$

We can clearly verify that the integrand is odd $\operatorname{since} \sin (x)$ is odd and $\left(x^{2}+1\right)$ is even. This also means that their quotient will also be odd. Therefore, we can use the aforementioned property as follows since we have symmetric bounds.

$$
\int_{-2023}^{2023} \frac{\sin (x)}{x^{2}+1} \mathrm{dx}=0
$$

Problem 9. $\int_{0}^{1} \frac{x}{x^{4}+1} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: $\frac{\pi}{8}$

We consider re-writing $x^{4}=\left(x^{2}\right)^{2}$, which gives us appropriate motivation to consider a u-substitution of $u=x^{2}$. This implies that $\mathrm{du}=2 x \mathrm{dx}$ and the following equivalent integral.

$$
\int_{0}^{1} \frac{x}{\left(x^{2}\right)^{2}+1} \mathrm{dx}=\int_{0}^{1} \frac{\left(\frac{\mathrm{du}}{2}\right)}{u^{2}+1}
$$

This is easily recognizable as the arc-tangent derivative, which allows us to simplify it as follows.

$$
\frac{1}{2} \cdot \int_{0}^{1} \frac{\mathrm{du}}{u^{2}+1}=\left.\frac{\arctan (u)}{2}\right|_{0} ^{1}=\frac{\arctan (1)}{2}-\frac{\arctan (0)}{2}=\frac{\frac{\pi}{4}}{2}-0=\frac{\pi}{8}
$$

Problem 10. $\int \frac{\mathrm{dx}}{x \cdot \sqrt{1-(\ln (x))^{2}}}$

Proposed by Ritvik Teegavarapu

Solution: $\arcsin (\ln (x))+C$
We note that $(\ln (x))^{\prime}=1 / x$, which implicates the u-substitution involving $u=\ln (x)$ and du $=1 / x \mathrm{dx}$. Therefore, we have the following equivalent integral.

$$
\int \frac{\mathrm{dx}}{x \cdot \sqrt{1-(\ln (x))^{2}}}=\int \frac{\mathrm{du}}{\sqrt{1-u^{2}}}
$$

This integral is easily recognizable as the derivative of $\arcsin (u)$, which gives us the following anti-derivative upon substituting back into u.

$$
\int \frac{\mathrm{du}}{\sqrt{1-u^{2}}}=\arcsin (u)+C=\arcsin (\ln (x))+C
$$

Problem 11. $\int \frac{\mathrm{dx}}{e^{x}+e^{-x}}$

Proposed by Ritvik Teegavarapu

Solution: $\arctan \left(e^{x}\right)+C$
We can multiply the numerator and denominator by e^{x} as follows.

$$
\int \frac{\mathrm{dx}}{e^{x}+e^{-x}} \cdot \frac{e^{x}}{e^{x}}=\int \frac{e^{x} \mathrm{dx}}{e^{2 x}+1}
$$

We can now consider the u-substitution of $u=e^{x}$, which also implies that $\mathrm{du}=e^{x} \mathrm{dx}$. Thus, the equivalent integral is as follows which can be recognized as the derivative of arc-tangent.

$$
\int \frac{e^{x} \mathrm{dx}}{e^{2 x}+1}=\int \frac{\mathrm{du}}{u^{2}+1}=\arctan (u)+C=\arctan \left(e^{x}\right)+C
$$

Problem 12. $\int_{0}^{1}(x-1)^{2}(x+1)^{2}\left(x^{2}+1\right)^{2}\left(x^{4}+1\right)^{2} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $\frac{128}{153}$
We can combine all of the components methodically as follows.

$$
\begin{gathered}
(x-1)^{2} \cdot(x+1)^{2}=((x-1)(x+1))^{2}=\left(x^{2}-1\right)^{2} \\
\left(x^{2}-1\right)^{2} \cdot\left(x^{2}+1\right)^{2}=\left(\left(x^{2}+1\right)\left(x^{2}-1\right)\right)^{2}=\left(x^{4}-1\right)^{2} \\
\left(x^{4}-1\right)^{2} \cdot\left(x^{4}+1\right)^{2}=\left(\left(x^{4}-1\right)\left(x^{4}+1\right)\right)^{2}=\left(x^{8}-1\right)^{2}
\end{gathered}
$$

Therefore, the integral becomes the following.

$$
\int_{0}^{1}\left(x^{8}-1\right)^{2} \mathrm{dx}=\int_{0}^{1} x^{16}-2 x^{8}+1 \mathrm{dx}=\left.\left(\frac{x^{17}}{17}-\frac{2 x^{9}}{9}+x\right)\right|_{0} ^{1}
$$

Evaluating, we have the following.

$$
\left.\left(\frac{x^{17}}{17}-\frac{2 x^{9}}{9}+x\right)\right|_{0} ^{1}=\left(\frac{1}{17}-\frac{2}{9}+1\right)=\frac{9}{153}-\frac{34}{153}+\frac{153}{153}=\frac{128}{153}
$$

Problem 13. $\int_{\frac{1}{3}}^{3} \ln \left(e^{\left\lfloor\frac{1}{x}\right\rfloor}\right) \mathrm{dx}$
Proposed by Brian Yang
Solution: $\frac{5}{6}$
We can simplify the integral using logarithm properties as follows.

$$
\int_{\frac{1}{3}}^{3} \ln \left(e^{\left\lfloor\frac{1}{x}\right\rfloor}\right) \mathrm{dx}=\int_{\frac{1}{3}}^{3}\left\lfloor\frac{1}{x}\right\rfloor \mathrm{dx}
$$

We note that for any $x>1$, this implies that $1 / x<1$ and that the floor of this value will be 0 . Therefore, we can split the integral as follows, noting that the latter integral will evaluate to 0 .

$$
\int_{\frac{1}{3}}^{3}\left\lfloor\frac{1}{x}\right\rfloor \mathrm{dx}=\int_{\frac{1}{3}}^{1}\left\lfloor\frac{1}{x}\right\rfloor \mathrm{dx}+\int_{1}^{3}\left\lfloor\frac{1}{x}\right\rfloor \mathrm{dx}=\int_{\frac{1}{3}}^{1}\left\lfloor\frac{1}{x}\right\rfloor \mathrm{dx}
$$

We note that on the interval of $x \in[1 / 2,1]$, the integrand will evaluate to 1 . Additionally, for $x \in[1 / 3,1 / 2]$, the integrand will evaluate to 2 . Therefore, we have the following final answer.

$$
\int_{\frac{1}{3}}^{1}\left\lfloor\frac{1}{x}\right\rfloor \mathrm{dx}=\int_{\frac{1}{3}}^{1 / 2} 2 \mathrm{dx}+\int_{1 / 2}^{1} 1 \mathrm{dx}=2 \cdot\left(\frac{1}{2}-\frac{1}{3}\right)+1 \cdot\left(1-\frac{1}{2}\right)=\frac{5}{6}
$$

Problem 14. $\int_{-\infty}^{\infty} \frac{x e^{-x^{2}}}{\ln \left(x^{2}+2\right)} \mathrm{dx}$

Proposed by Jeck Lim

Solution: 0

Note that by the property of an odd function $o(x)$, we have the following if integrating across symmetric bounds.

$$
\int_{-a}^{a} o(x) \mathrm{dx}=0
$$

We can clearly verify that the integrand is odd since $x e^{-x^{2}}$ is odd and $\ln \left(x^{2}+2\right)$ is even. This also means that their quotient will also be odd. Therefore, we can use the aforementioned property as follows since we have symmetric bounds.

$$
\int_{-\infty}^{\infty} \frac{x e^{-x^{2}}}{\ln \left(x^{2}+2\right)} \mathrm{dx}=0
$$

Problem 15. $\int_{0}^{3}\lceil x\rceil \cdot x^{[x]}-\lfloor x\rfloor \mathrm{dx}$

Proposed by Brian Yang

Solution: $\frac{611}{12}$
We can split the integral into the intervals, namely $[0,1],[1,2]$, and $[2,3]$. On each of these intervals, we have that $\lceil x\rceil=\{1,2,3\}$ and $\lfloor x\rfloor=\{0,1,2\}$, respectively. We can calculate each of the integrals as follows.

$$
\begin{gathered}
\int_{0}^{1}\lceil x\rceil \cdot x^{[x\rceil}-\lfloor x\rfloor \mathrm{dx}=\int_{0}^{1} 1 \cdot x^{1}-0 \mathrm{dx}=\int_{0}^{1} x \mathrm{dx}=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1}{2}-0=\frac{1}{2} \\
\int_{1}^{2}\lceil x\rceil \cdot x^{\lceil x\rceil}-\lfloor x\rfloor \mathrm{dx}=\int_{1}^{2} 2 \cdot x^{2}-1 \mathrm{dx}=\left.\left(\frac{2 x^{3}}{3}-x\right)\right|_{1} ^{2}=\frac{10}{3}-\left(\frac{-1}{3}\right)=\frac{11}{3} \\
\int_{2}^{3}\lceil x\rceil \cdot x^{\lceil x\rceil}-\lfloor x\rfloor \mathrm{dx}=\int_{1}^{2} 3 \cdot x^{3}-2 \mathrm{dx}=\left.\left(\frac{3 x^{4}}{4}-2 x\right)\right|_{2} ^{3}=\frac{229}{4}-\left(\frac{32}{4}\right)=\frac{187}{4}
\end{gathered}
$$

Adding these together, we have the following.

$$
\frac{1}{2}+\frac{11}{3}+\frac{187}{4}=\frac{6}{12}+\frac{44}{12}+\frac{561}{12}=\frac{611}{12}
$$

Problem 16. $\int_{0}^{1} \sin (\sqrt[3]{x}) \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $6 \sin (1)+3 \cos (1)-6$
We now consider the substitution $u=\sqrt[3]{x}$, which implies that $\mathrm{du}=\frac{1}{3} \cdot x^{\frac{-2}{3}} \mathrm{dx}$. Thus, we have the following.

$$
\int_{0}^{1} \sin (\sqrt[3]{x}) \mathrm{dx}=\int_{0}^{1} \sin (u) \cdot\left(3 u^{2}\right) \mathrm{du}
$$

For this, we can use tabular integration as follows.

$$
\begin{gathered}
\mathscr{D}: 3 u^{2} \Longrightarrow 6 u \Longrightarrow 6 \Longrightarrow 0 \\
\mathscr{I}: \sin (u) \Longrightarrow-\cos (u) \Longrightarrow-\sin (u) \Longrightarrow \cos (u) \Longrightarrow \sin (u)
\end{gathered}
$$

Thus, our integral evaluates to the following.

$$
\begin{gathered}
I=-3 u^{2} \cos (u)+6 u \sin (u)+\left.6 \cos (u)\right|_{0} ^{1} \\
I=\left(-3(1)^{2} \cos (1)+6(1) \sin (1)+6 \cos (1)\right)-\left(-3(0)^{2} \cos (0)+6(0) \sin (0)+6 \cos (0)\right)
\end{gathered}
$$

Simplifying, we have the following.

$$
I=(-3 \cos (1)+6 \sin (1)+6 \cos (1))-(6 \cos (0))=6 \sin (1)+3 \cos (1)-6
$$

Problem 17. $\int_{0}^{2 \pi} \max \{\sin x, \cos x\} \mathrm{dx}$

Proposed by Jeck Lim

Solution: $2 \sqrt{2}$
We note that $\sin (x)=\cos (x)$ only at the values of $x=\pi / 4$ and $x=5 \pi / 4$. Thus, we can break up the integration at these points. It is trivial to verify that $\cos (x)>\sin (x)$ on the intervals of $[0, \pi / 4]$ and $[5 \pi / 4,2 \pi]$, with $\sin (x)>\cos (x)$ on the remaining interval of $[\pi / 4,5 \pi / 4]$. Thus, we have the following resulting integrals.

$$
\int_{0}^{2 \pi} \max \{\sin x, \cos x\} \mathrm{dx}=\int_{0}^{\pi / 4} \cos (x) \mathrm{dx}+\int_{\pi / 4}^{5 \pi / 4} \sin x \mathrm{dx}+\int_{5 \pi / 4}^{2 \pi} \cos (x) \mathrm{dx}
$$

We evaluate each of these as follows.

$$
\int_{0}^{\pi / 4} \cos (x) \mathrm{dx}+\int_{\pi / 4}^{5 \pi / 4} \sin x \mathrm{dx}+\int_{5 \pi / 4}^{2 \pi} \cos (x) \mathrm{dx}=\left.(\sin (x))\right|_{0} ^{\pi / 4}+\left.(-\cos (x))\right|_{\pi / 4} ^{5 \pi / 4}+\left.(\sin (x))\right|_{5 \pi / 4} ^{2 \pi}
$$

This simplifies as follows.

$$
\left.(\sin (x))\right|_{0} ^{\pi / 4}+\left.(-\cos (x))\right|_{\pi / 4} ^{5 \pi / 4}+\left.(\sin (x))\right|_{5 \pi / 4} ^{2 \pi}=\left(\frac{\sqrt{2}}{2}-0\right)+\left(\frac{\sqrt{2}}{2}-\frac{-\sqrt{2}}{2}\right)+\left(0-\frac{-\sqrt{2}}{2}\right)=2 \sqrt{2}
$$

Problem 18. $\int \cos (x) \csc (x) \cot (x) \mathrm{dx}$

Proposed by Jeck Lim

Solution: $-x-\cot (x)+C$
We can re-express the integral as follows.

$$
\int \cos (x) \cdot\left(\frac{1}{\sin (x)}\right) \cdot \cot (x) \mathrm{dx}=\int \cot (x) \cdot \cot (x) \mathrm{dx}=\int \cot ^{2}(x) \mathrm{dx}
$$

Using the Pythagorean Identity, we have that $1+\cot ^{2}(x)=\csc ^{2}(x)$, which we can substitute and simplify as follows.

$$
\int \cot ^{2}(x) \mathrm{dx}=\int \csc ^{2}(x)-1 \mathrm{dx}=-x-\cot (x)+C
$$

Problem 19. $\int \frac{-x \cdot e^{\frac{-1}{1-x^{2}}}}{\left(1-x^{2}\right)^{2}} \mathrm{dx}$

Proposed by Brian Yang

Solution: $\frac{e^{\frac{-1}{1-x^{2}}}}{2}+C$
With the x on the outside of the exponential, we are motivated to consider the u-substitution of $u=1-x^{2}$. This implies $\mathrm{du}=-2 x \mathrm{dx}$, and we have the following equivalent integral.

$$
\int \frac{-x \cdot e^{\frac{-1}{1-x^{2}}}}{\left(1-x^{2}\right)^{2}} \mathrm{dx}=\int \frac{e^{\frac{-1}{u}} \mathrm{du}}{2 u^{2}}
$$

We can now utilize a secondary u-substitution, namely with $v=-1 / u$. This would imply that $\mathrm{dv}=1 / u^{2} \mathrm{du}$, and we have the following equivalent integral.

$$
\int \frac{e^{\frac{-1}{u}} \mathrm{du}}{2 u^{2}}=\int \frac{e^{v} \mathrm{dv}}{2}=\frac{e^{v}}{2}+C
$$

We now undo the u-substitutions as follows.

$$
\frac{e^{v}}{2}+C=\frac{e^{\frac{-1}{u}}}{2}+C=\frac{e^{\frac{-1}{1-x^{2}}}}{2}+C
$$

Problem 20. $\int \frac{x^{\frac{-1}{2}}}{1+x^{\frac{1}{3}}} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $6 x^{\frac{1}{6}}-6 \arctan \left(x^{\frac{1}{6}}\right)+C$
We see that there is a $x^{1 / 2}$ and $x^{1 / 3}$ present in the integrand. To make the integrand in terms of only whole powers, we consider $u=x^{1 / 6}$. This would make du as follows.

$$
\mathrm{du}=\frac{1}{6} \cdot x^{-5 / 6} \mathrm{dx}=\frac{1}{6} \cdot\left(x^{1 / 6}\right)^{-5} \mathrm{dx}=\frac{1}{6} \cdot u^{-5} \mathrm{dx} \Longrightarrow 6 u^{5} \mathrm{du}=\mathrm{dx}
$$

Substituting into the original integral, we have the following.

$$
\int \frac{x^{\frac{-1}{2}}}{1+x^{\frac{1}{3}}} \mathrm{dx}=\int \frac{\left(x^{\frac{1}{6}}\right)^{-3}}{1+\left(x^{\frac{1}{6}}\right)^{2}} \mathrm{dx}=\int \frac{u^{-3}}{1+u^{2}} \cdot\left(6 u^{5} \mathrm{du}\right)=\int \frac{6 u^{2}}{u^{2}+1} \mathrm{du}
$$

Factoring out the 6 , we utilize the +0 trick, in which we add 1 and subtract 1 in an attempt to match the denominator and split as follows.

$$
6 \cdot\left(\int \frac{\left(u^{2}+\mathbf{1}\right)-\mathbf{1}}{u^{2}+1} \mathrm{du}\right)=6 \cdot\left(\int \frac{u^{2}+1}{u^{2}+1} \mathrm{du}-\int \frac{1}{u^{2}+1} \mathrm{du}\right)=6 \cdot\left(\int 1 \mathrm{du}-\int \frac{1}{u^{2}+1} \mathrm{du}\right)
$$

Both of these integrals are fairly simple to evaluate, but we must remember to substitute back in terms of x to get the final answer.

$$
6 \cdot\left(\int 1 \mathrm{du}-\int \frac{1}{u^{2}+1} \mathrm{du}\right)=6 \cdot u-6 \arctan (u)+C=6 x^{\frac{1}{6}}-6 \arctan \left(x^{\frac{1}{6}}\right)+C
$$

Problem 21. $\int \frac{x^{2}+\cos ^{2}(x)}{\left(1+x^{2}\right) \sin ^{2}(x)} d x$

Proposed by Ritvik Teegavarapu

Solution: $-\arctan (x)-\cot (x)+C$
We begin by utilizing the +0 trick, in which we add 1 and subtract 1 in an attempt to match the denominator and split as follows.

$$
\int \frac{\left(x^{2}+\mathbf{1}\right)+\left(\cos ^{2}(x)-\mathbf{1}\right)}{\left(1+x^{2}\right) \sin ^{2}(x)} \mathrm{dx}=\int \frac{\left(x^{2}+1\right)}{\left(1+x^{2}\right) \sin ^{2}(x)} \mathrm{dx}+\int \frac{\cos ^{2}(x)-1}{\left(1+x^{2}\right) \sin ^{2}(x)} \mathrm{dx}
$$

Simplifying, we have the following.

$$
\begin{aligned}
\int \frac{\left(x^{2}+1\right)}{\left(1+x^{2}\right) \sin ^{2}(x)} \mathrm{dx}+\int \frac{\cos ^{2}(x)-1}{\left(1+x^{2}\right) \sin ^{2}(x)} \mathrm{dx} & =\int \frac{1}{\sin ^{2}(x)} \mathrm{dx}+\int \frac{-\sin ^{2}(x)}{\left(1+x^{2}\right) \sin ^{2}(x)} \mathrm{dx} \\
\int \frac{1}{\sin ^{2}(x)} \mathrm{dx}+\int \frac{-\sin ^{2}(x)}{\left(1+x^{2}\right) \sin ^{2}(x)} \mathrm{dx} & =\int \csc ^{2}(x) \mathrm{dx}-\int \frac{1}{\left(1+x^{2}\right)} \mathrm{dx}
\end{aligned}
$$

Evaluating each of these integrals, we have the final answer as follows.

$$
\int \csc ^{2}(x) \mathrm{dx}-\int \frac{1}{\left(1+x^{2}\right)} \mathrm{dx}=-\cot (x)-\arctan (x)+C=-\arctan (x)-\cot (x)+C
$$

Problem 22. $\int \frac{e^{2 x}-1}{\sqrt{e^{3 x}+e^{x}}} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $2 \sqrt{e^{x}+e^{-x}}+C$ or $2 e^{-x} \sqrt{e^{3 x}+e^{x}}+C$
We first begin by factoring out e^{x} from the square root in the denominator as follows.

$$
\int \frac{e^{2 x}-1}{\sqrt{e^{3 x}+e^{x}}} \mathrm{dx}=\int \frac{e^{2 x}-1}{e^{x} \cdot \sqrt{e^{x}-e^{-x}}} \mathrm{dx}=\int \frac{e^{x}-e^{-x}}{\sqrt{e^{x}+e^{-x}}} \mathrm{dx}
$$

We note that the numerator is exactly the derivative of the argument in the square root. Thus, we let $u=e^{x}+e^{-x}$, which implies $\mathrm{du}=e^{x}-e^{-x} \mathrm{dx}$ and the following equivalent integral.

$$
\int \frac{e^{x}-e^{-x}}{\sqrt{e^{x}+e^{-x}}} \mathrm{dx}=\int \frac{\mathrm{du}}{\sqrt{u}}=2 \sqrt{u}+C=2 \sqrt{e^{x}+e^{-x}}+C=2 e^{-x} \sqrt{e^{3 x}+e^{x}}+C
$$

Problem 23. $\int \frac{\sin (\ln (x))}{x^{3}} d x$

Proposed by Ritvik Teegavarapu

Solution: $\frac{\cos (\ln (x))+2 \sin (\ln (x))}{-5 x^{2}}+C$
To remove the $\ln (x)$, we consider the substitution $x=e^{u}$. This implies that $\mathrm{dx}=e^{u}$ du, and the following equivalent integral.

$$
\int \frac{\sin (\ln (x))}{x^{3}} \mathrm{dx}=\int \frac{\sin \left(\ln \left(e^{u}\right)\right)}{\left(e^{u}\right)^{3}} \cdot\left(e^{u} \mathrm{du}\right)=\int \sin (u) \cdot e^{-2 u} \mathrm{du}
$$

We can use integration by parts on this, with $a=\sin (u)$ and $\mathrm{db}=e^{-2 u}$ du, which gives the following.

$$
\int a \mathrm{db}=a b-\int b \mathrm{da}=\left(\sin (u) \cdot \frac{e^{-2 u}}{-2}\right)-\int \cos (u) \cdot\left(\frac{e^{-2 u}}{-2}\right) \mathrm{du}
$$

Doing integration by parts on this integral again, with $b=\cos (u)$ and $\mathrm{da}=e^{-2 u} /(-2) \mathrm{du}$, we have the following.

$$
\int b \mathrm{da}=a b-\int a \mathrm{db}=\left(\cos (u) \cdot \frac{e^{-2 u}}{4}\right)+\int \sin (u) \cdot\left(\frac{e^{-2 u}}{4}\right) \mathrm{du}
$$

Note that $1 / 4$ of the original integral has reappeared after this second application of integration by parts. Thus, we have the following, where I is the value of the initial integral.

$$
I=\left(\sin (u) \cdot \frac{e^{-2 u}}{-2}\right)-\int \cos (u) \cdot\left(\frac{e^{-2 u}}{-2}\right) \mathrm{du}=\left(\sin (u) \cdot \frac{e^{-2 u}}{-2}\right)-\left(\left(\cos (u) \cdot \frac{e^{-2 u}}{4}\right)+\frac{I}{4}\right)
$$

Combining the like terms of I, we have the following.

$$
\frac{5 I}{4}=\left(\sin (u) \cdot \frac{e^{-2 u}}{-2}\right)-\left(\cos (u) \cdot \frac{e^{-2 u}}{4}\right)
$$

Substituting u in terms of x, which would be $u=\ln (x)$, we have the following equivalent form.

$$
\frac{5 I}{4}=\left(\sin (\ln (x)) \cdot \frac{e^{-2 \ln (x)}}{-2}\right)-\left(\cos (\ln (x)) \cdot \frac{e^{-2 \ln (x)}}{4}\right)=\frac{\sin (\ln (x))}{-2 x^{2}}-\frac{\cos (\ln (x))}{4 x^{2}}=\frac{2 \sin (\ln (x))}{-4 x^{2}}-\frac{\cos (\ln (x))}{4 x^{2}}
$$

Simplifying, we have the following.

$$
I=\frac{4}{5} \cdot\left(\frac{2 \sin (\ln (x))+\cos (\ln (x))}{-4 x^{2}}\right)=\frac{\cos (\ln (x))+2 \sin (\ln (x))}{-5 x^{2}}+C
$$

Problem 24. $\int_{0}^{1} x \cdot \ln ^{2}(x) \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $\frac{1}{4}$
We can consider the substitution $x=e^{u}$ to remove the logarithm from the integrand as follows, noting that this would also imply that $\mathrm{dx}=e^{u}$ du.

$$
\int_{0}^{1} x \cdot \ln ^{2}(x) \mathrm{dx}=\int_{-\infty}^{0} e^{u} \cdot\left(\ln \left(e^{u}\right)\right)^{2} \cdot\left(e^{u} \mathrm{du}\right)=\int_{-\infty}^{0} e^{2 u} \cdot u^{2} \mathrm{du}
$$

For this, we can use tabular integration as follows.

$$
\begin{gathered}
\mathscr{D}: u^{2} \Longrightarrow 2 u \Longrightarrow 2 \Longrightarrow 0 \\
\mathscr{I}: e^{2 u} \Longrightarrow e^{2 u} / 2 \Longrightarrow e^{2 u} / 4 \Longrightarrow e^{2 u} / 8
\end{gathered}
$$

Thus, our integral evaluates to the following.

$$
\begin{gathered}
I=\left.\left(\frac{u^{2} e^{2 u}}{2}-\frac{(2 u) \cdot e^{2 u}}{4}+\frac{2 \cdot e^{2 u}}{8}\right)\right|_{-\infty} ^{0}=\left.\left(\frac{u^{2} e^{2 u}}{2}-\frac{(u) \cdot e^{2 u}}{2}+\frac{e^{2 u}}{4}\right)\right|_{-\infty} ^{0} \\
I=\left(\frac{e^{0}}{2}-\frac{1 \cdot e^{0}}{2}+\frac{e^{0}}{4}\right)-(0-0+0)
\end{gathered}
$$

Simplifying, we have the following.

$$
I=\left(\frac{1}{2}-\frac{1}{2}+\frac{1}{4}\right)-(0)=\frac{1}{4}
$$

Problem 25. $\int x^{2} \cos \left(\frac{1}{x}\right)+\frac{x}{3} \sin \left(\frac{1}{x}\right) \mathrm{dx}$
Proposed by Brian Yang
Solution: $\frac{x^{3}}{3} \cos \left(\frac{1}{x}\right)+C$
We seek to manipulate the integrand in the form of a product rule, otherwise known as $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$. Since we see that there is a $\cos (1 / x)$ and a $\sin (1 / x)$ present in the integrand, we claim that $g=\cos (1 / x)$. Substituting this into our product rule equation, we have the following.

$$
\left(f \cdot \cos \left(\frac{1}{x}\right)\right)^{\prime}=f^{\prime} \cdot \cos \left(\frac{1}{x}\right)+f \cdot\left(-\sin \left(\frac{1}{x}\right)\right) \cdot\left(\frac{-1}{x^{2}}\right)=f^{\prime} \cdot \cos \left(\frac{1}{x}\right)+\frac{f}{x^{2}} \cdot \sin \left(\frac{1}{x}\right)
$$

Noting the resemblance to the integrand, we let $f=x^{3} / 3$ to match with the second component, which works as follows.

$$
\left(\frac{x^{3}}{3} \cdot \cos \left(\frac{1}{x}\right)\right)^{\prime}=\left(\frac{x^{3}}{3}\right)^{\prime} \cdot \cos \left(\frac{1}{x}\right)+\frac{\frac{x^{3}}{3}}{x^{2}} \cdot \sin \left(\frac{1}{x}\right)=x^{2} \cdot \cos \left(\frac{1}{x}\right)+\frac{x}{3} \cdot \sin \left(\frac{1}{x}\right)
$$

Thus, we can integrate as follows.

$$
\int x^{2} \cos \left(\frac{1}{x}\right)+\frac{x}{3} \sin \left(\frac{1}{x}\right)=\int\left(\frac{x^{3}}{3} \cdot \cos \left(\frac{1}{x}\right)\right)^{\prime}=\frac{x^{3}}{3} \cos \left(\frac{1}{x}\right)+C
$$

Problem 26. $\int_{1}^{e} 2 \ln (x)+(\ln (x))^{2} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: e
We seek to manipulate the integrand in the form of a product rule, otherwise known as $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$.

$$
\int_{1}^{e} 2 \ln (x)+(\ln (x))^{2} \mathrm{dx}=\int_{1}^{e}\left(\frac{2 \cdot \ln (x)}{x}\right) \cdot x+(\ln (x))^{2} \cdot 1 \mathrm{dx}
$$

We recognize as $f(x)=\ln ^{2}(x)$ and $g(x)=x$, meaning that $f^{\prime}(x)=\frac{2 \ln (x)}{x}$ and $g^{\prime}(x)=1$.

$$
\begin{gathered}
\int_{1}^{e}\left(\frac{2 \cdot \ln (x)}{x}\right) \cdot x+(\ln (x))^{2} \cdot 1 \mathrm{dx}=\int_{1}^{e} f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \mathrm{dx} \\
\int_{1}^{e}(f(x) g(x))^{\prime}=\left.f(x) g(x)\right|_{1} ^{e}=\left.\ln ^{2}(x) \cdot x\right|_{1} ^{e}=\ln ^{2}(e) \cdot e-\ln ^{2}(1) \cdot 1=e
\end{gathered}
$$

Problem 27. $\int_{0}^{3} \max \left\{\sqrt{1-(x-1)^{2}}, \sqrt{1-(x-2)^{2}}\right\} \mathrm{dx}$

Proposed by Brian Yang

Solution: $\frac{\sqrt{3}}{4}+\frac{\pi}{6}$
The fastest approach to this integral is to solve it geometrically. The two functions represent semicircles (since the square root results in a non-negative value), both with radius 1 and centered respectively at $(1,0)$ and $(2,0)$.

$$
\begin{aligned}
& \mathscr{C}_{1}: y=\sqrt{1-(x-1)^{2}} \Longrightarrow(x-1)^{2}+y^{2}=1 \\
& \mathscr{C}_{2}: y=\sqrt{1-(x-2)^{2}} \Longrightarrow(x-2)^{2}+y^{2}=1
\end{aligned}
$$

The two semi-circles intersect at $x=1.5$, and have a shared area. Since we want the maximum of the two functions across the interval, we note that \mathscr{C}_{1} will be the maximum of the two on the interval of $[1,1.5]$, and \mathscr{C}_{2} will be the maximum of the two on the interval of [1.5,2].

Thus, it suffices to find the area and subtract from π. The area of the overlapping area A is composed of two sectors and a triangle, which we calculate as follows.

$$
A=[\text { triangle }]+2[\text { sector }]
$$

The height of the triangle is calculated as $\sqrt{1-(1.5-1)^{2}}=\sqrt{1-0.5^{2}}=\sqrt{0.75}=\sqrt{3} / 2$. The base of the triangle is 1 , since the semi-circles intersect the x-axis at $x=1$ and $x=2$. As for the area of the arcs, they subtend an angle of $\pi / 6$ with a radius of 1 . Thus, we have the following calculation.

$$
A=\frac{\frac{\sqrt{3}}{2} \cdot 1}{2}+2 \cdot\left(\frac{1}{2} \cdot(1)^{2} \cdot \frac{\pi}{6}\right)=\frac{\sqrt{3}}{4}+2 \cdot\left(\frac{\pi}{12}\right)=\frac{\sqrt{3}}{4}+\frac{\pi}{6}
$$

Problem 28. $\int \frac{e^{x}-1}{e^{x}+1} \mathrm{dx}$

Proposed by Brian Yang

Solution: $2 \ln \left(e^{-x}+1\right)+x+C$ or $2 \ln \left(e^{x}+1\right)-x+C$
We begin by utilizing the +0 trick, in which we add 2 and subtract -2 in an attempt to match the denominator and split as follows.

$$
\int \frac{\left(e^{x}-1+\mathbf{2}\right)-\mathbf{2}}{e^{x}+1} \mathrm{dx}=\int \frac{\left(e^{x}+1\right)-2}{e^{x}+1} \mathrm{dx}=\int \frac{e^{x}+1}{e^{x}+1} \mathrm{dx}-\int \frac{2}{e^{x}+1} \mathrm{dx}=\int 1 \mathrm{dx}-\int \frac{2}{e^{x}+1} \mathrm{dx}
$$

The first integral is trivial, but for the second integral, we consider multiplying both the numerator and denominator by e^{-x} as follows.

$$
\int \frac{2}{e^{x}+1} \cdot \frac{e^{-x}}{e^{-x}} \mathrm{dx}=\int \frac{2 e^{-x}}{1+e^{-x}} \mathrm{dx}
$$

We note that the derivative of the denominator is the numerator (ignoring the factor of 2). Thus, we consider $u=1+e^{-x}$, which implies $\mathrm{du}=-e^{-x} \mathrm{dx}$ and the following equivalent integral. Note that we remove the absolute value sign because $e^{-x}+1$ is never negative.

$$
\int \frac{2 e^{-x}}{1+e^{-x}} \mathrm{dx}=\int \frac{-2 \mathrm{du}}{u}=-2 \ln |u|=-2 \ln \left(e^{-x}+1\right)+C
$$

Therefore, the final answer is as follows.

$$
\int 1 \mathrm{dx}-\int \frac{2}{e^{x}+1} \mathrm{dx}=x-\left(-2 \ln \left(e^{-x}+1\right)\right)+C=2 \ln \left(e^{-x}+1\right)+x+C
$$

An equivalent form that can be formed is if you factor out e^{-x} as follows.
$2 \ln \left(e^{-x}\left(1+e^{x}\right)\right)+x+C=2 \cdot\left[\ln \left(e^{-x}\right)+\ln \left(1+e^{x}\right)\right]+x+C=2 \ln \left(1+e^{x}\right)-2 x+x+C=2 \ln \left(e^{x}+1\right)-x+C$
Problem 29. $\int_{0}^{1} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}$
Proposed by Jeck Lim
Solution: $\frac{1}{3}$
We note for $x \in[1 / 2,1]$, the following holds true regarding the floor function.

$$
\left\lfloor\log _{2} x\right\rfloor=-1
$$

Thus, our integral becomes the following.
$\int_{0}^{1} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}=\int_{0}^{1 / 2} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}+\int_{1 / 2}^{1} 2^{-1} \mathrm{dx}=\int_{0}^{1 / 2} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}+\left(2^{-1}\right) \cdot\left(1-\frac{1}{2}\right)=\int_{0}^{1 / 2} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}+\left(2^{-1}\right)^{2}$
We can repeat the same procedure for the first integral, noting that for $x \in[1 / 4,1 / 2]$, the following holds true regarding the floor function.

$$
\left\lfloor\log _{2} x\right\rfloor=-2
$$

Thus, our integral becomes the following.
$\int_{0}^{1 / 2} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}=\int_{0}^{1 / 4} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}+\int_{1 / 4}^{1 / 2} 2^{-2} \mathrm{dx}=\int_{0}^{1 / 4} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}+\left(2^{-1}\right) \cdot\left(\frac{1}{2}-\frac{1}{4}\right)=\int_{0}^{1 / 4} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}+\left(2^{-2}\right)^{2}$
We notice the pattern of the integrand in question, namely that we are adding the area of rectangles with height 2^{-i} and length 2^{-i}. Thus, the integral in question is equivalent to the following summation, which is a simple geometric series.

$$
\int_{0}^{1} 2^{\left\lfloor\log _{2} x\right\rfloor} \mathrm{dx}=\sum_{i=1}^{\infty}\left(2^{-i}\right)^{2}=\sum_{i=1}^{\infty}\left(\frac{1}{4}\right)^{i}=\frac{\frac{1}{4}}{1-\frac{1}{4}}=\frac{\frac{1}{4}}{\frac{3}{4}}=\frac{1}{3}
$$

Problem 30. $\int_{0}^{1} \frac{x^{2}-2 x}{x^{3}+1} \mathrm{dx}$
Proposed by Brian Yang
Solution: $\ln (2)-\frac{2 \pi \sqrt{3}}{9}$
By partial fraction decomposition, we rewrite the integral as follows.

$$
\int_{0}^{1} \frac{x^{2}-2 x}{x^{3}+1} \mathrm{dx}=\int_{0}^{1} \frac{1}{x+1} \mathrm{dx}-\int_{0}^{1} \frac{1}{x^{2}-x+1} \mathrm{dx}
$$

For the left integral, it evaluates as follows.

$$
\int_{0}^{1} \frac{1}{x+1} \mathrm{dx}=[\ln (x+1)]_{0}^{1}=\ln 2-\ln 1=\ln 2
$$

The right integral is simplified by completing the square.

$$
\int_{0}^{1} \frac{1}{x^{2}-x+1} d x=\int_{0}^{1} \frac{1}{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} d x
$$

Now we apply a u-substitution of $u=\frac{2 x-1}{\sqrt{3}}$, which means $\mathrm{du}=\frac{2}{\sqrt{3}} \mathrm{dx}$:

$$
\int_{0}^{1} \frac{1}{\left(x-\frac{1}{2}\right)^{2}+\frac{3}{4}} \mathrm{dx}=\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{\sqrt{3}}{2\left(\frac{3 u^{2}}{4}+\frac{3}{4}\right)} \mathrm{du}=\frac{2 \sqrt{3}}{3} \int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{1}{u^{2}+1} \mathrm{du}
$$

We can directly compute the integral as follows.

$$
\int_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}} \frac{1}{u^{2}+1} \mathrm{du}=[\arctan (u)]_{-\frac{1}{\sqrt{3}}}^{\frac{1}{\sqrt{3}}}=\frac{\pi}{6}-\left(-\frac{\pi}{6}\right)=\frac{\pi}{3} .
$$

Thus, we can add all the results of the integrals as follows.

$$
\int_{0}^{1} \frac{x^{2}-2 x}{x^{3}+1} \mathrm{dx}=\ln (2)-\frac{2 \sqrt{3}}{3} \cdot\left(\frac{\pi}{3}\right)=\ln 2-\frac{2 \pi \sqrt{3}}{9}
$$

Problem 31. $\int_{0}^{\pi / 4} \frac{\tan (x)+2 \sec ^{2}(x)+2 \tan (x) \sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: $\frac{\pi}{4}+\ln (3)$
We hope to manipulate the numerator to resemble the denominator. Splitting the $2 \sec ^{2}(x)=\sec ^{2}(x)+\sec ^{2}(x)$, we have the following.

$$
\int_{0}^{\pi / 4} \frac{\left(\tan (x)+\sec ^{2}(x)\right)+\left(\sec ^{2}(x)+2 \tan (x) \sec ^{2}(x)\right)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}=\int_{0}^{\pi / 4} \frac{\tan (x)+\sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}+\int_{0}^{\pi / 4} \frac{\sec ^{2}(x)+2 \tan (x) \sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}
$$

Simplifying, we have the following.

$$
\int_{0}^{\pi / 4} \frac{\tan (x)+\sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}+\int_{0}^{\pi / 4} \frac{\sec ^{2}(x)+2 \tan (x) \sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}=\int_{0}^{\pi / 4} 1 \mathrm{dx}+\int_{0}^{\pi / 4} \frac{\sec ^{2}(x)+2 \tan (x) \sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}
$$

The first integral simplifies as follows.

$$
\int_{0}^{\pi / 4} 1 \mathrm{dx}=\left.x\right|_{0} ^{\pi / 4}=\frac{\pi}{4}
$$

For the second integral, we note that the numerator is indeed the derivative of the denominator, as we verify below.

$$
\frac{d}{d x}\left(\tan (x)+\sec ^{2}(x)\right)=\sec ^{2}(x)+2 \sec (x) \cdot(\sec (x) \tan (x))=\sec ^{2}(x)+2 \sec ^{2}(x) \tan (x)
$$

Thus, we consider $u=\tan (x)+\sec ^{2}(x)$, which transforms the integral as follows upon changing the bounds.

$$
\int_{0}^{\pi / 4} \frac{\sec ^{2}(x)+2 \tan (x) \sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}=\int_{1}^{3} \frac{\mathrm{du}}{u}=\left.\ln |u|\right|_{1} ^{3}=\ln (3)-\ln (1)=\ln (3)
$$

Thus, the integral becomes the following by adding the results we obtained above.

$$
\int_{0}^{\pi / 4} \frac{\tan (x)+2 \sec ^{2}(x)+2 \tan (x) \sec ^{2}(x)}{\tan (x)+\sec ^{2}(x)} \mathrm{dx}=\frac{\pi}{4}+\ln (3)
$$

Problem 32. $\int_{0}^{1}\left(x^{6}+x^{4}+x^{2}\right) \cdot \sqrt{2 x^{4}+3 x^{2}+6} \mathrm{~d} x$

Proposed by Ritvik Teegavarapu

Solution: $\frac{11 \sqrt{11}}{18}$

The first instinct for this integral is to use a u-substitution. However, we see that the degree will not match if we let u be the argument of the square root. Thus, we consider factoring out x from the expression $\left(x^{6}+x^{4}+x^{2}\right)$ and bringing it inside the square root as follows.

$$
\int_{0}^{1}\left(x^{5}+x^{3}+x^{1}\right) \cdot(x) \cdot \sqrt{2 x^{4}+3 x^{2}+6} \mathrm{dx}=\int_{0}^{1}\left(x^{5}+x^{3}+x^{1}\right) \cdot \sqrt{x^{2} \cdot\left(2 x^{4}+3 x^{2}+6\right)} \mathrm{dx}
$$

Simplifying, we have the following.

$$
\int_{0}^{1}\left(x^{5}+x^{3}+x^{1}\right) \cdot \sqrt{x^{2} \cdot\left(2 x^{4}+3 x^{2}+6\right)} \mathrm{dx}=\int_{0}^{1}\left(x^{5}+x^{3}+x^{1}\right) \cdot \sqrt{2 x^{6}+3 x^{4}+6 x^{2}} \mathrm{dx}
$$

If we now consider $u=2 x^{6}+3 x^{4}+6 x^{2}$, we then get that $\mathrm{du}=12 x^{5}+12 x^{3}+12 x \mathrm{dx}=12\left(x^{5}+x^{3}+x\right) \mathrm{dx}$. This is exactly a multiple of the expression outside the square root, so we perform the u-substitution and change the bounds as follows.

$$
\int_{0}^{1}\left(x^{6}+x^{4}+x^{2}\right) \cdot \sqrt{2 x^{4}+3 x^{2}+6} \mathrm{dx}=\int_{0}^{11} \frac{\sqrt{u}}{12} \mathrm{du}=\left.\frac{1}{12} \cdot \frac{2}{3} u^{3 / 2}\right|_{0} ^{11}=\frac{11^{3 / 2}}{18}-\frac{0^{3 / 2}}{18}=\frac{11 \sqrt{11}}{18}
$$

Problem 33. $\int_{0}^{3}\left(x^{2}+1\right) \mathrm{d}\lfloor x\rfloor$

Proposed by Ritvik Teegavarapu

Solution: 17

We begin by using integration by parts in order to remove the modified dx component, with $u=x^{2}+1$ and $\mathrm{d} v=\mathrm{d}\lfloor x\rfloor$. This implies that $\mathrm{du}=2 x \mathrm{dx}$ and $v=\lfloor x\rfloor$. Thus, we get the following equivalent expression as follows.

$$
\int_{0}^{3}\left(x^{2}+1\right) \mathrm{d}\lfloor x\rfloor=\int u \mathrm{dv}=u v-\int v \mathrm{~d} u=\left.\left(x^{2}+1\right)\lfloor x\rfloor\right|_{0} ^{3}-\int_{0}^{3}\lfloor x\rfloor(2 x) \mathrm{dx}
$$

Evaluating the first portion, we get the following.

$$
\left.\left(x^{2}+1\right)\lfloor x\rfloor\right|_{0} ^{3}=\left(3^{2}+1\right)\lfloor 3\rfloor-\left(0^{2}+1\right)\lfloor 0\rfloor=10 \cdot 3-1 \cdot 0=30
$$

As for the resulting integral, $\lfloor x\rfloor$ will be an integer across the different intervals. Thus, we break up the integral onto the respective intervals as follows.

$$
\int_{0}^{3}\lfloor x\rfloor(2 x) \mathrm{dx}=\int_{0}^{1}\lfloor x\rfloor(2 x) \mathrm{dx}+\int_{1}^{2}\lfloor x\rfloor(2 x) \mathrm{dx}+\int_{2}^{3}\lfloor x\rfloor(2 x) \mathrm{dx}
$$

We note that $\lfloor x\rfloor=\{0,1,2\}$ on the given intervals, respectively. Substituting this in, we have the following.

$$
\begin{gathered}
\int_{0}^{1}\lfloor x\rfloor(2 x) \mathrm{dx}=\int_{0}^{1} 0 \cdot(2 x) \mathrm{dx}=0 \\
\int_{1}^{2}\lfloor x\rfloor(2 x) \mathrm{dx}=\int_{1}^{2} 2 x \mathrm{dx}=\left.x^{2}\right|_{1} ^{2}=2^{2}-1^{2}=3
\end{gathered}
$$

$$
\int_{2}^{3}\lfloor x\rfloor(2 x) \mathrm{dx}=\int_{2}^{3} 2 \cdot 2 x=\left.2 x^{2}\right|_{2} ^{3}=2(3)^{2}-2(2)^{2}=18-8=10
$$

Thus, the final integral becomes the following.

$$
30-\int_{0}^{3}\lfloor x\rfloor(2 x) \mathrm{dx}=30-(0+3+10)=30-13=17
$$

Problem 34. $\int_{0}^{\pi} \frac{1-\sin x}{1+\sin x} d x$

Proposed by Jeck Lim

Solution: $4-\pi$

We immediately consider multiplying by the conjugate of $1-\sin (x)$, which is $1+\sin (x)$. This will force the use of the Pythagorean identity in the denominator as follows.

$$
\int_{0}^{\pi} \frac{1-\sin (x)}{1+\sin (x)} \cdot \frac{1-\sin (x)}{1-\sin (x)} d x=\int_{0}^{\pi} \frac{(1-\sin (x))^{2}}{1-\sin ^{2}(x)} d x=\int_{0}^{\pi} \frac{1-2 \sin (x)+\sin ^{2}(x)}{\cos ^{2}(x)} d x
$$

Dividing each of the components by $\cos ^{2}(x)$, we get the following.

$$
\int_{0}^{\pi} \frac{1-2 \sin (x)+\sin ^{2}(x)}{\cos ^{2}(x)} d x=\int_{0}^{\pi} \sec ^{2}(x)-2 \tan (x) \sec (x)+\tan ^{2}(x) d x
$$

Re-expressing $\tan ^{2}(x)=\sec ^{2}(x)-1$ to bring the terms of the integrand in terms of $\sec ^{2}(x)$, we have the following.

$$
\int_{0}^{\pi} \sec ^{2}(x)-2 \tan (x) \sec (x)+\left(\sec ^{2}(x)-1\right) d x=\int_{0}^{\pi} 2 \sec ^{2}(x)-2 \tan (x) \sec (x)-1 d x
$$

These are simple trigonometric anti-derivatives, which are shown below.

$$
\int_{0}^{\pi} 2 \sec ^{2}(x)-2 \tan (x) \sec (x)-1 \mathrm{dx}=\left.(2 \tan (x)-2 \sec (x)-x)\right|_{0} ^{\pi}
$$

Simplifying, we have the following.
$\left.(2 \tan (x)-2 \sec (x)-x)\right|_{0} ^{\pi}=(2 \tan (\pi)-2 \sec (\pi)-\pi)-(2 \tan (0)-2 \sec (0)-0)=(0-(-2)-\pi)-(0-2-0)=4-\pi$
Problem 35. $\int \frac{e^{3 x}(6 x-5)}{(2 x-1)^{2}} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $\frac{e^{3 x}}{2 x-1}+C$
We seek to manipulate the integrand in the form of a product rule, otherwise known as $(f g)^{\prime}=f^{\prime} g+g^{\prime} f$.

Since we see that there is a $e^{3 x}$ present in the integrand, we claim that $g=e^{3 x}$. This is because upon taking derivative, $e^{3 x}$ will still be present Substituting this into our product rule equation, we have the following.

$$
\left(f \cdot e^{3 x}\right)^{\prime}=f^{\prime} \cdot e^{3 x}+f \cdot 3 e^{3 x}=e^{3 x} \cdot\left(f^{\prime}+3 f\right)
$$

Since this must match the integrand, we have the following.

$$
\frac{e^{3 x}(6 x-5)}{(2 x-1)^{2}}=e^{3 x} \cdot\left(f^{\prime}+3 f\right) \Longrightarrow \frac{6 x-5}{(2 x-1)^{2}}=f^{\prime}+3 f
$$

We begin by utilizing the +0 trick, in which we add 2 and subtract -2 in an attempt to match the denominator and split as follows.

$$
\frac{6 x-5+2-2}{(2 x-1)^{2}}=\frac{(6 x-3)-2}{(2 x-1)^{2}}=\frac{3(2 x-1)-2}{(2 x-1)^{2}}=\frac{3(2 x-1)}{(2 x-1)^{2}}-\frac{2}{(2 x-1)^{2}}=\frac{3}{2 x-1}-\frac{2}{(2 x-1)^{2}}=f^{\prime}+3 f
$$

From this, it is clear that we select $f=1 /(2 x-1)$. We now verify that the derivative is as follows.

$$
f^{\prime}=\left((2 x-1)^{-1}\right)^{\prime}=-\left((2 x-1)^{-2}\right) \cdot 2=\frac{-2}{(2 x-1)^{2}}
$$

Thus, we now have the desired product rule, which we can integrate as follows.

$$
\int \frac{e^{3 x}(6 x-5)}{(2 x-1)^{2}} \mathrm{dx}=\int\left(\frac{1}{2 x-1} \cdot e^{3 x}\right)^{\prime} \mathrm{dx}=\frac{e^{3 x}}{2 x-1}+C
$$

Problem 36. $\int_{1}^{2} \frac{9 x+4}{x^{5}+3 x^{2}+x} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $\ln \left(\frac{80}{23}\right)$
We begin by doing partial fraction decomposition on the integrand as follows.

$$
\int_{1}^{2} \frac{9 x+4}{x \cdot\left(x^{4}+3 x+1\right)} \mathrm{dx}=\int_{1}^{2} \frac{A}{x}+\frac{B x^{3}+C x^{2}+D x+E}{x^{4}+3 x+1} \mathrm{dx}
$$

Cross multiplying, we have the following.

$$
9 x+4=A\left(x^{4}+3 x+1\right)+x \cdot\left(B x^{3}+C x^{2}+D x+E\right)=(A+B) x^{4}+C x^{3}+D x^{2}+(3 A+E) x+A
$$

Matching the polynomial components, it is clear that $A=4, B=-4, C=0, D=0$, and $E=-3$. Thus, our integral becomes the following.

$$
\int_{1}^{2} \frac{A}{x}+\frac{B x^{3}+C x^{2}+D x+E}{x^{4}+3 x^{2}+1} \mathrm{dx}=\int_{1}^{2} \frac{4}{x}+\frac{-4 x^{3}-3}{x^{4}+3 x+1} \mathrm{dx}=\int_{1}^{2} \frac{4}{x} \mathrm{dx}-\int_{1}^{2} \frac{4 x^{3}+3}{x^{4}+3 x+1} \mathrm{dx}
$$

The first integral is trivial to evaluate as follows.

$$
\begin{equation*}
\int_{1}^{2} \frac{4}{x} \mathrm{dx}=\left.4 \ln |x|\right|_{1} ^{2}=4 \ln (2)-4 \ln (1)=\ln \left(2^{4}\right)-0=\ln (\tag{16}
\end{equation*}
$$

For the second integral, we realize that the numerator is indeed the derivative of the denominator. Thus, we consider the u-substitution of $u=x^{4}+3 x+1$, which implies that $\mathrm{du}=4 x^{3}+3$. Thus, we have the following equivalent integral.

$$
\int_{1}^{2} \frac{4 x^{3}+3}{x^{4}+3 x+1} \mathrm{dx}=\int_{(1)^{4}+3(1)+1}^{(2)^{4}+3(2)+1} \frac{\mathrm{du}}{u}=\int_{5}^{23} \frac{\mathrm{du}}{u}=\left.\ln |u|\right|_{5} ^{23}=\ln (23)-\ln (5)=\ln \left(\frac{23}{5}\right)
$$

Thus, the final result of the integral becomes the following.

$$
\int_{1}^{2} \frac{4}{x} \mathrm{dx}-\int_{1}^{2} \frac{4 x^{3}+3}{x^{4}+3 x+1} \mathrm{dx}=\ln (16)-\ln \left(\frac{23}{5}\right)=\ln \left(\frac{16}{\frac{23}{5}}\right)=\ln \left(\frac{16 \cdot 5}{23}\right)=\ln \left(\frac{80}{23}\right)
$$

Problem 37. $\int \ln \left(x^{2}+1\right) \mathrm{dx}$

Proposed by Jeck Lim

Solution: $x \cdot \ln \left(x^{2}+1\right)-2 x+2 \arctan (x)+C$
We begin by utilizing integration by parts, with $u=\ln \left(x^{2}+1\right)$ and $\mathrm{dv}=\mathrm{dx}$. Thus, we have the following equivalent expression.

$$
\int u \mathrm{dv}=u v-\int v \mathrm{du}=\ln \left(x^{2}+1\right) \cdot x-\int \frac{x \cdot 2 x}{x^{2}+1} \mathrm{dx}
$$

For the integral, we factor out the 2 , we utilize the +0 trick, in which we add 1 and subtract 1 in an attempt to match the denominator and split as follows.

$$
2 \cdot\left(\int \frac{\left(x^{2}+\mathbf{1}\right)-\mathbf{1}}{x^{2}+1} \mathrm{dx}\right)=2 \cdot\left(\int \frac{x^{2}+1}{x^{2}+1} \mathrm{dx}-\int \frac{1}{x^{2}+1} \mathrm{dx}\right)=2 \cdot\left(\int 1 \mathrm{dx}-\int \frac{1}{x^{2}+1} \mathrm{dx}\right)
$$

Both of these integrals are fairly simple to evaluate, but we must remember to substitute back in terms of x to get the final answer.

$$
2 \cdot\left(\int 1 \mathrm{dx}-\int \frac{1}{x^{2}+1} \mathrm{dx}\right)=2 x-2 \arctan (x)+C
$$

Thus, the final integral becomes the following.

$$
\ln \left(x^{2}+1\right) \cdot x-\int \frac{x \cdot 2 x}{x^{2}+1} \mathrm{dx}=x \ln \left(x^{2}+1\right)-(2 \cdot x-2 \arctan (x))+C=x \cdot \ln \left(x^{2}+1\right)-2 x+2 \arctan (x)+C
$$

Problem 38. $\int \frac{\left(x^{2}+1\right)\left(x^{2}+4\right)}{\left(x^{2}+2\right)\left(x^{2}+3\right)} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $x-\sqrt{2} \cdot \arctan \left(\frac{x}{\sqrt{2}}\right)+\frac{2}{\sqrt{3}} \cdot \arctan \left(\frac{x}{\sqrt{3}}\right)$
Expanding the numerator and denominator, we have the following.

$$
\int \frac{\left(x^{2}+1\right)\left(x^{2}+4\right)}{\left(x^{2}+2\right)\left(x^{2}+3\right)}=\int \frac{x^{4}+5 x^{2}+4}{x^{4}+5 x^{2}+6}
$$

We begin by utilizing the +0 trick, in which we add 2 and subtract -2 in an attempt to match the denominator and split as follows.

$$
\int \frac{\left(x^{4}+5 x^{2}+4+\mathbf{2}\right)-\mathbf{2}}{x^{4}+5 x^{2}+6} \mathrm{dx}=\int \frac{\left(x^{4}+5 x^{2}+6\right)-2}{x^{4}+5 x^{2}+6} \mathrm{dx}=\int \frac{x^{4}+5 x^{2}+6}{x^{4}+5 x^{2}+6} \mathrm{dx}-\int \frac{2}{x^{4}+5 x^{2}+6} \mathrm{dx}
$$

Simplifying, we have the following.

$$
\int \frac{x^{4}+5 x^{2}+6}{x^{4}+5 x^{2}+6} \mathrm{dx}-\int \frac{2}{x^{4}+5 x^{2}+6} \mathrm{dx}=\int 1 \mathrm{dx}-\int \frac{2}{x^{4}+5 x^{2}+6} \mathrm{dx}=x+\int \frac{-2}{x^{4}+5 x^{2}+6} \mathrm{dx}
$$

We begin by doing partial fraction decomposition on the integrand as follows.

$$
\int \frac{-2}{x^{4}+5 x^{2}+6} \mathrm{dx}=\int \frac{A x+B}{x^{2}+2}+\frac{C x+D}{x^{2}+3} \mathrm{dx}
$$

Cross multiplying, we have the following.

$$
-2=(A x+B)\left(x^{2}+3\right)+(C x+D)\left(x^{2}+2\right)=(A+C) x^{3}+(B+D) x^{2}+(3 A+2 C) x+(3 B+2 D)
$$

Since $A+C=0$ and $3 A+2 C=0$, it must be the case that $A=C=0$. Additionally, we are told that $B+D=0$ and $3 B+2 D=2$, which implies that $D=2$ and $B=-2$. Thus, we have the following equivalent integral.

$$
\int \frac{-2}{x^{4}+5 x^{2}+6} \mathrm{dx}=\int \frac{-2}{x^{2}+2}+\frac{2}{x^{2}+3} \mathrm{dx}=\int \frac{-2}{x^{2}+2} \mathrm{dx}+\int \frac{2}{x^{2}+3} \mathrm{dx}
$$

We can calculate each of these integrals as follows, using their resemblance to the derivative of $\arctan (x)$.

$$
\begin{aligned}
& \int \frac{-2}{x^{2}+2} \cdot \frac{1 / 2}{1 / 2} \mathrm{dx}=\int \frac{-1}{\frac{x^{2}}{2}+1} \mathrm{dx}=\int \frac{-1}{\left(\frac{x}{\sqrt{2}}\right)^{2}+1} \mathrm{dx}=\sqrt{2} \cdot \arctan \left(\frac{x}{\sqrt{2}}\right)+C \\
& \int \frac{2}{x^{2}+3} \cdot \frac{1 / 3}{1 / 3} \mathrm{dx}=\int \frac{2 / 3}{\frac{x^{2}}{3}+1} \mathrm{dx}=\int \frac{2 / 3}{\left(\frac{x}{\sqrt{3}}\right)^{2}+1} \mathrm{dx}=\frac{2}{\sqrt{3}} \cdot \arctan \left(\frac{x}{\sqrt{3}}\right)+C
\end{aligned}
$$

Thus, the integral becomes the following.

$$
x+\int \frac{-2}{x^{4}+5 x^{2}+6} \mathrm{dx}=x-\sqrt{2} \cdot \arctan \left(\frac{x}{\sqrt{2}}\right)+\frac{2}{\sqrt{3}} \cdot \arctan \left(\frac{x}{\sqrt{3}}\right)
$$

Problem 39. $\int_{0}^{1}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}$

Proposed by Brian Yang

Solution: $-\frac{2023}{2022}$
We note for $x \in[1 / 2023,1]$, the following holds true regarding the floor function.

$$
\left\lfloor\log _{2023} x\right\rfloor=-1
$$

Thus, our integral becomes the following.

$$
\begin{aligned}
& \int_{0}^{1}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}=\int_{0}^{1 / 2023}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+\int_{1 / 2023}^{1}-1 \mathrm{dx}=\int_{0}^{1 / 2023}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+(-1) \cdot\left(1-\frac{1}{2023}\right) \\
& \int_{0}^{1}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}=\int_{0}^{1 / 2023}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+(-1) \cdot\left(1-\frac{1}{2023}\right)=\int_{0}^{1 / 2023}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+\frac{-2022}{2023}
\end{aligned}
$$

We can repeat the same procedure for the first integral, noting that for $x \in\left[1 / 2023^{2}, 1 / 2023\right]$, the following holds true regarding the floor function.

$$
\left\lfloor\log _{2023} x\right\rfloor=-2
$$

Thus, our integral becomes the following.

$$
\begin{aligned}
& \int_{0}^{1 / 2023}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}=\int_{0}^{1 / 2023^{2}}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+\int_{1 / 2023^{2}}^{1 / 2023}-2 \mathrm{dx}=\int_{0}^{1 / 2023^{2}}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+(-2) \cdot\left(\frac{1}{2023}-\frac{1}{2023^{2}}\right) \\
& \int_{0}^{1 / 2023}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}=\int_{0}^{1 / 2023^{2}}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+(-2) \cdot\left(\frac{1}{2023}-\frac{1}{2023^{2}}\right)=\int_{0}^{1 / 2023^{2}}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}+\frac{-2 \cdot 2022}{2023^{2}}
\end{aligned}
$$

We notice the pattern of the integrand in question, namely that we are adding the area of rectangles with height $-i$ and length $(2022) /(2023)^{i}$. Thus, the integral in question is equivalent to the following summation, which is a simple geometric series.

$$
I=\int_{0}^{1}\left\lfloor\log _{2023} x\right\rfloor \mathrm{dx}=\sum_{i=1}^{\infty}(-i) \cdot \frac{2022}{2023^{i}}=(-2022) \cdot \sum_{i=1}^{\infty} \frac{i}{2023^{i}}=(-2022) \cdot S
$$

If we let S be the summation, we consider multiplying by $1 / 2023$ and subtracting as follows.

$$
\begin{gathered}
S=\frac{1}{2023}+\frac{2}{2023^{2}}+\frac{3}{2023^{3}}+\cdots \\
\frac{S}{2023}=\frac{1}{2023^{2}}+\frac{2}{2023^{3}}+\frac{3}{2023^{4}}+\cdots \\
\frac{2022 S}{2023}=\frac{1}{2023}+\left(\frac{2}{2023^{2}}-\frac{1}{2023^{2}}\right)+\left(\frac{3}{2023^{3}}-\frac{2}{2023^{3}}\right)=\frac{1}{2023}+\frac{1}{2023^{2}}+\frac{1}{2023^{3}}+\cdots \\
\frac{2022 S}{2023}=\frac{\frac{1}{2023}}{1-\frac{1}{2023}}=\frac{1}{\frac{2023}{2022}}=\frac{1}{2022} \Longrightarrow S=\frac{2023}{2022^{2}}
\end{gathered}
$$

Substituting this for our summation, we have the following.

$$
I=(-2022) \cdot S=-2022 \cdot\left(\frac{2023}{2022^{2}}\right)=\frac{-2023}{2022}
$$

Problem 40. $\int \frac{x-1}{\sqrt{2 x^{2}-3}} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $\frac{\sqrt{2 x^{2}-3}}{2}-\frac{\ln \left|\sqrt{\frac{2 x^{2}}{3}-1}+\frac{\sqrt{6} \cdot x}{\sqrt{3}}\right|}{\sqrt{2}}+C$ or $\frac{\sqrt{2 x^{2}-3}}{2}-\frac{\ln \left|\sqrt{2 x^{2}-3}+\sqrt{2} x\right|}{\sqrt{2}}+C$
We begin by splitting the integral as follows.

$$
\int \frac{x-1}{\sqrt{2 x^{2}-3}} \mathrm{dx}=\int \frac{x}{\sqrt{2 x^{2}-3}} \mathrm{dx}-\int \frac{1}{\sqrt{2 x^{2}-3}} \mathrm{dx}
$$

The first integral can be solved using a u-substitution of $u=2 x^{2}-3$, which implies $\mathrm{du}=4 x \mathrm{dx}$ as follows.

$$
\int \frac{x}{\sqrt{2 x^{2}-3}} \mathrm{dx}=\int \frac{\mathrm{du}}{4 \sqrt{u}}=\frac{\sqrt{u}}{2}+C=\frac{\sqrt{2 x^{2}-3}}{2}+C
$$

For the second integral, we consider the trigonometric substitution of $x=\sqrt{3} \sec (\theta) / \sqrt{2}$, which implies that $\mathrm{dx}=(\sqrt{3} \sec (\theta) \tan (\theta)) / \sqrt{2} \mathrm{~d} \theta$. Therefore, we have the following equivalent integral.

$$
\int \frac{1}{\sqrt{2 x^{2}-3}} \mathrm{dx}=\int \frac{1}{\sqrt{2\left(\frac{\sqrt{3} \sec (\theta)}{\sqrt{2}}\right)^{2}-3}} \cdot \frac{\sqrt{3} \sec (\theta) \tan (\theta)}{\sqrt{2}} \mathrm{~d} \theta=\int \frac{\sqrt{3} \sec (\theta) \tan (\theta)}{\sqrt{2} \cdot \sqrt{3 \sec ^{2}(\theta)-3}} \mathrm{~d} \theta
$$

Simplifying using the Pythagorean identity, we have the following.

$$
\int \frac{\sqrt{3} \sec (\theta) \tan (\theta)}{\sqrt{2} \cdot \sqrt{3 \sec ^{2}(\theta)-3}} \mathrm{~d} \theta=\int \frac{\sqrt{3} \sec (\theta) \tan (\theta)}{\sqrt{2} \cdot \sqrt{3} \tan (\theta)}=\int \frac{1}{\sqrt{2}} \cdot \sec (\theta) \mathrm{d} \theta
$$

Thus, the integral becomes as follows.

$$
\int \frac{1}{\sqrt{2}} \cdot \sec (\theta) \mathrm{d} \theta=\frac{\ln |\sec (\theta)+\tan (\theta)|}{\sqrt{2}}+C
$$

We need to re-formulate the answer in terms of x, so we can relate the angles as follows.

$$
\begin{gathered}
\tan ^{2}(\theta)+1=\sec ^{2}(\theta) \\
\tan ^{2}(\theta)+1=\left(\frac{\sqrt{6}}{3} \cdot x\right)^{2} \Longrightarrow \tan (\theta)=\sqrt{\frac{2 x^{2}}{3}-1}
\end{gathered}
$$

Thus, the second integral becomes the following.

$$
\frac{\ln |\sec (\theta)+\tan (\theta)|}{\sqrt{2}}+C=\frac{\ln \left|\sqrt{\frac{2 x^{2}}{3}-1}+\frac{\sqrt{6} \cdot x}{\sqrt{3}}\right|}{\sqrt{2}}+C
$$

Thus, the final answer is as follows.

$$
\int \frac{x-1}{\sqrt{2 x^{2}-3}} \mathrm{dx}=\int \frac{x}{\sqrt{2 x^{2}-3}} \mathrm{dx}-\int \frac{1}{\sqrt{2 x^{2}-3}} \mathrm{dx}=\frac{\sqrt{2 x^{2}-3}}{2}-\frac{\ln \left|\sqrt{\frac{2 x^{2}}{3}-1}+\frac{\sqrt{6} \cdot x}{\sqrt{3}}\right|}{\sqrt{2}}+C
$$

This can be simplified by factoring out the $\sqrt{3}$ from the $\ln ()$ inside the second portion of the anti-derivative as follows.

$$
\frac{\sqrt{2 x^{2}-3}}{2}-\frac{\ln \left|\sqrt{3} \cdot \sqrt{2 x^{2}-3}+\sqrt{3} \cdot(\sqrt{2} \cdot x)\right|}{\sqrt{2}}+C=\frac{\sqrt{2 x^{2}-3}}{2}-\frac{\ln \left|\sqrt{2 x^{2}-3}+(\sqrt{2} \cdot x)\right|}{\sqrt{2}}-\ln (\sqrt{3})+C
$$

Since $\ln (\sqrt{3})$ is a constant, it can be absorbed into the constant of integration, which results in the equivalent form.

$$
\frac{\sqrt{2 x^{2}-3}}{2}-\frac{\ln \left|\sqrt{2 x^{2}-3}+(\sqrt{2} \cdot x)\right|}{\sqrt{2}}-\ln (\sqrt{3})+C=\frac{\sqrt{2 x^{2}-3}}{2}-\frac{\ln \left|\sqrt{2 x^{2}-3}+\sqrt{2} x\right|}{\sqrt{2}}+C
$$

