
Individual Round 2022-2023 Solutions
Problem 1. Given any four digit number X = ABCD, consider the quantity Y (X) = 2 ·AB+CD. For example,
if X = 1234, then Y (X) = 2 · 12+ 34 = 58. Find the sum of all natural numbers n ≤ 10000 such that over all
four digit numbers X , the number n divides X if and only if it also divides Y (X).

Proposed by Natalie Couch

Solution: 10171 .
For X = ABCD note that X −Y (X) = 100 ·AB+CD− (2 ·AB+CD) = 98 ·AB. Hence, any positive divisor n
of 98, i.e. n ∈ {1,2,7,14,49,98}, divides X if and only if it divides Y (X). Moreover, the number n = 10000
is greater than X or Y (X), hence does not divide either X or Y (X), for any X = ABCD. We claim these are all
possible values of n, so that the answer is 1+2+7+14+49+98+10000 = 10171 .
Given any natural number n ≤ 10000 other than the ones listed above, we shall give X = ABCD such that n
divides X but not Y (X). For 300 ≤ n < 10000 this is immediate: let X be any multiple of n, and note n does not
divide Y (X) as Y (X) is bounded above by 2 ·99+99 = 297. Similarly, for 124 ≤ n < 300, pick the smallest four
digit number X = ABCD that is a multiple of n; then, X ≤ 1299, so n does not divide Y (X) as Y (X) is bounded
above by 2 · 12+ 99 = 123. For 100 ≤ n < 123, the number X = 10n works by direct inspection. Finally,
for n < 100 that does not divide 98, observe any sequence of 100 consecutive integers contains a divisor of n.
Choose digits A ≥ 1,B such that AB ≡ 1 (mod n) or AB ≡ −1 (mod n), and there exist two digits C,D such
that n divides X := ABCD. Since n is coprime to AB, n does not divide 98 ·AB, so n does not divide Y (X).

Problem 2. A sink has a red faucet, a blue faucet, and a drain. The two faucets release water into the sink at
constant but different rates when turned on, and the drain removes water from the sink at a constant rate when
opened. It takes 5 minutes to fill the sink (from empty to full) when the drain is open and only the red faucet
is on, it takes 10 minutes to fill the sink when the drain is open and only the blue faucet is on, and it takes
15 seconds to fill the sink when both faucets are on and the drain is closed. Suppose that the sink is currently
one-thirds full of water, and the drain is opened. Rounded to the nearest integer, how many seconds will elapse
before the sink is emptied (keeping the two faucets closed)?

Proposed by Brian Yang

Solution: 11 .
Let R1,R2 be the rates, in units/second, at which water is added to the sink due to the red and blue faucets,
respectively, and let r be the rate, in units/second, at which water is removed from the sink due to the drain.
WLOG assume the capacity of the sink is 600 units. Then, the problem conditions say

(R1 − r)300 = (R2 − r)600 = (R1 +R2)15 = 600.

Solving this system yields r = 37
2 ,R1 =

41
2 ,R2 =

39
2 . Thus, it takes 200

37/2 = 10.810 ≈ 11 seconds to empty the
1
3 full sink with the drain.

Problem 3. One of the bases of a right triangular prism is a triangle XY Z with side lengths XY = 13,Y Z =
14,ZX = 15. Suppose that a sphere may be positioned to touch each of the five faces of the prism at exactly
one point. A plane parallel to the rectangular face of the prism containing Y Z cuts the prism and the sphere,
giving rise to a cross-section of area A for the prism and area 15π for the sphere. Find the sum of all possible
values of A.
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Proposed by Brian Yang

Solution:
448

3
.

For any sphere tangent to the three rectangular faces of the prism, its cross section determined by the three
tangency points is its great circle, the radius of which is the inradius r of △XY Z. Note that [XY Z] = 84: the
X-altitude of △XY Z is of length 12 and it splits Y Z into two segments of length 5 and 9. Then, applying
[XY Z] = rs, where s = 21 is the semiperimeter of △XY Z, we have r = 4. Hence, the height of the prism is 8.
Let P be the plane of the cut described above. Note P cuts the prism into two pieces, one of which is a
triangular prism whose triangular base is similar to △XY Z. If 0 ≤ d ≤ 4 is the distance between P and the
center O of the sphere, then the spherical cross-section has radius

√
16−d2, hence area π(16− d2). Then,

π(16−d2) = 15π , so d = 1. Since △XY Z has inradius r = 4 and X-altitude 12, the distance between P and
X is either 7 or 9. By similarity, altitudes of 7 and 9 correspond to bases of lengths 49

6 and 21
2 . This yields

rectangular cross sections of dimensions 49
6 ×8 and 21

2 ×8, respectively, so the answer is 8(49
6 + 21

2 ) =
448

3
.

Problem 4. Albert, Brian, and Christine are hanging out by a magical tree. This tree gives each of them a
stick, each of which have a non-negative real length. Say that Albert gets a branch of length x, Brian a branch
of length y, and Christine a branch of length z, and the lengths follow the condition that x+ y+ z = 2.
Let m and n be the minimum and maximum possible values of xy+ yz+ xz− xyz, respectively. What is m+n?

Proposed by Ritvik Teegavarapu

Solution:
28
27

.

Let S = xy+ yz+ zx− xyz. Notice that

P := (1− x)(1− y)(1− z) = 1− (x+ y+ z)+S = S−1.

so it is enough to find the minimum and maximum of P. There are three cases: all three terms 1−x,1−y,1− z
are positive, in which P > 0, one or more terms 1− x,1− y,1− z are 0, in which P = 0, or one of the terms
1− x,1− y,1− z are negative, in which the other two are positive and so P < 0.
Suppose all three terms 1− x,1− y,1− z are positive, i.e. x,y,z < 1. Under these constraints, the AM-GM
inequality reads

3
√

P = 3
√

(1− x)(1− y)(1− z)≤ (1− x)+(1− y)+(1− z)
3

=
1
3
,

which implies P ≤ 1
27 , with equality holding when x = y = z = 2

3 .
On the other hand, assume 1− x < 0 (WLOG). Since 0 ≤ x,y,z ≤ 2, we have |1− x|, |1− y|, |1− z| ≤ 1. Thus,
|P| ≤ 1, in particular P ≥−1. Equality holds when x = 2,y = 0,z = 0.

It follows m =−1+1 = 0,n = 1
27 +1 = 28

27 , so the answer is
28
27

.

Problem 5. Let S := MAT HEMAT ICSMAT HEMAT ICSMAT HE . . . be the sequence where 7 copies of the
word MAT HEMAT ICS are concatenated together. How many ways are there to delete all but five letters of S
such that the resulting subsequence is CHMMC?

Proposed by Jeck Lim
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Solution: 434 .
For any subsequence CHMMC in S let 1≤ i1, i2, . . . , i5 ≤ 7 be indices that denote the copy of MAT HEMAT ICS
in which C,H,M,M,C are contained in, respectively. For convenience, let M1,M2 be the first and second M in
CHMMC. Each copy of MAT HEMAT ICS contains a unique C and H, while each copy of MAT HEMAT ICS
contains two M’s, so we only need do casework on the 4 possible cases of the positions of M1,M2 relative to
their respective copies of MAT HEMAT ICS: they are either both the first M, both the second M, or one of them
is the first M and the other the second M. Counting the possible choices of indices in each case, we have

• Case 1: M1,M2 are the first M’s. In this case we observe that 1 ≤ i1 < i2 < i3 < i4 ≤ i5 ≤ 7 yielding
(8

5

)
choices of indices.

• Case 2: M1 is the first M, M2 is the second M. In this case we observe that 1 ≤ i1 < i2 < i3 ≤ i4 ≤ i5 ≤ 7
yielding

(9
5

)
choices of indices.

• Cases 3 and 4: M1 is the second M. In this case we observe that 1 ≤ i1 < i2 ≤ i3 < i4 ≤ i5 ≤ 7, regardless
of whether M2 is the first or second M, yielding

(9
5

)
choices of indices for each case.

Thus, there are
(8

5

)
+
(9

5

)
+
(9

5

)
+
(9

5

)
= 434 such subsequences.

Problem 6. Consider two sequences of integers an and bn such that a1 = a2 = 1, b1 = b2 = 1 and that the
following recursive relations are satisfied for integers n > 2:

an = an−1an−2 −bn−1bn−2,

bn = bn−1an−2 +an−1bn−2.

Determine the value of
∑

1≤n≤2023,bn ̸=0

an

bn
.

Proposed by Ritvik Teegavarapu

Solution: 675 .
For any integer n ≥ 1, set zn = an +bni ∈ C. Hence, z1 = z2 = 1+ i. For n > 2 notice that

zn = an +bni = (an−1an−2 −bn−1bn−2)+(bn−1an−2 +an−1bn−2)i

= (an−1 +bn−1i)(an−2 +bn−2i) = zn−1zn−2.

Thus, z3 = z1z2 = (1+ i)2,z4 = z2z3 = (1+ i)3, . . . . Suppose F1, . . . ,Fn−1 are non-negative integers such that
z1 = (1+ i)F1 ,z2 = (1+ i)F2 , . . . ,zn−1(1+ i)Fn−1 . Then, zn = zn−1zn−2 = (1+ i)Fn−1(1+ i)Fn−2 = (1+ i)Fn−1+Fn−2 .
Therefore, zn = (1+ i)Fn , where {Fn} is a sequence of numbers given by F0 = 0,F1 = F2 = 1 and the recursive
relation Fn = Fn−1 +Fn−2. In particular, Fn is the usual nth Fibonacci number.
Note (1+ i)4 = −4 ∈ R, so the ratio Re(zn) : Im(zn) = an : bn depends only on Fn modulo 4. Since F5 ≡ 1
(mod 4), F6 = 8, the residue of {Fn} modulo 4 is the 6-periodic sequence F1,F2,F3,F4,F5,F0,F1, . . . . Thus,
the sequence of ratios an

bn
is a 6-periodic sequence whose first five terms (corresponding to F1, . . . ,F5) are

1,1,0,−1,1 (note b6 = 0, so the ratio is “undefined” in that case). We conclude

∑
1≤n≤2023, bn ̸=0

an

bn
=

a2023

b2023
+

2022
6

·
(

a1

b1
+

a2

b2
+

a3

b3
+

a4

b4
+

a5

b5

)
= 675 .

Problem 7. Suppose ABC is a triangle with circumcenter O. Let A′ be the reflection of A across BC. If BC = 12,
∠BAC = 60◦, and the perimeter of ABC is 30, then find A′O.
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Proposed by Jeff Ren

Solution: 6
√

3 .
Note that ∠BOC = 120◦,∠BA′C = 60◦ so A′BOC is cyclic. Since reflection preserves lengths and angles,
△A′BC ∼=△ABC, so the circumradius R of A′BOC is the same as that of △ABC, Applying Ptolemy’s theorem
to A′BOC, we have

A′O ·BC = A′B ·OC+BO ·CA′ = R(A′B+CA′) = R(AB+CA),

so A′O = R(AB+CA)
BC . By the law of sines, BC

R = 2sin∠BAC =
√

3, so AO′ = AB+CA√
3

= 18√
3
= 6

√
3 .

Problem 8. A class of 10 students wants to determine the class president by drawing slips of paper from a box.
One of the students, Bob, puts a slip of paper with his name into the box. Each other student has a 1

2 probability
of putting a slip of paper with their own name into the box and a 1

2 probability of not doing so. Later, one slip
is randomly selected from the box. Given that Bob’s slip is selected, find the expected number of slips of paper
in the box before the slip is selected.

Proposed by Jeff Ren

Solution:
5120
1023

.

There is a 1
29

( 9
n−1

)
chance of a box with n slips and a 1

n chance of selecting Bob’s slip thereafter. Hence,
the probability there are n slips in the box and Bob’s slip is selected thereafter is 1

29n

( 9
n−1

)
, and the overall

probability Bob’s slip is selected is ∑
10
n=1

1
29n

( 9
n−1

)
. Noting that 1

n

( 9
n−1

)
= 1

10

(10
n

)
, the conditional expectation

value is
∑

10
n=1 n · 1

29n

( 9
n−1

)
∑

10
n=1

1
29n

( 9
n−1

) =
29

∑
10
n=1

1
10

(10
n

) =
10 ·29

210 −1
=

5120
1023

.

Problem 9. Let a and b be positive integers, a > b, such that 6! ·11 divides xa − xb for all positive integers x.
What is the minimum possible value of a+b?

Proposed by Ritvik Teegavarapu

Solution: 68 .
Notice 6! ·11 = 24 ·32 ·5 ·11. When x = 2, we have

6! ·11 | 2b(2a−b −1) =⇒ 24 | 2b

since 2a−b −1 is always odd. Thus, we must have b ≥ 4 for the condition of the problem to hold.
By the CRT, the condition of the problem is equivalent to xa − xb ≡ 0 (mod q) for all integers x, over q =
24,32,5,11. If x is a multiple of 2 (resp. 3,5,11), then the assertion a ≥ b > 4 implies that xa−xb ≡ 0 (mod q)
for q = 24 (resp. 32,6,11), so in what follows assume that x is relatively prime to q. Then, the statement
xa − xb ≡ 0 (mod q) is equivalent to xa−b ≡ 1 (mod q).
For x ∈ (Z/qZ)∗ (the set of all residues of q relatively prime to q), denote by |x| its multiplicative order modulo
q. The least common multiple of the set of positive integers {|x| : x ∈ (Z/qZ)∗} is precisely 4,6,4,10 for
q = 24,32,5,11, respectively. That is to say, xa−b ≡ 1 (mod q) for all x ∈ (Z/qZ)∗ if and only if 4,6,4,10
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divide a− b for q = 24,32,5,11, respectively1. Hence, a > b ≥ 4 are positive integers satisfying the problem
condition if and only if lcm(4,6,10) divides a− b. Thus, a− b = 60k for some positive integer k. It is clear
a+b is minimized when k = 1, attaining the minimum value of 64+4 = 68 .

Problem 10. Find the number of pairs of positive integers (m,n) such that n < m ≤ 100 and the polynomial
xm + xn +1 has a root on the unit circle.

Proposed by Ritvik Teegavarapu

Solution: 1260 .
Suppose gcd(m,n) = 1. Then, for any integer d ≥ 1, the polynomial f (x) = xm + xn + 1 has a root on the
unit circle if and only if the polynomial f (xd) = xmd + xnd + 1 does. To this end, we first consider the case
gcd(m,n) = 1.
Let m,n be relatively prime positive integers such that the polynomial xm + xn +1 has a root r of magnitude 1.
Thus, |rm|= |rn|= 1, so the equation rm + rn +1 = 0 says that the sum of the three corresponding unit vectors
in R2 is 0. These three vectors must necessarily form an equilateral triangle. Thus, rm and rn must take on
exp(2πi/3) and exp(4πi/3) in some order.
By properties of complex argument, there exist integers a,b such that m · arg(r),n · arg(r) equals 2π/3 +
2πa,4π/3+2πb in some order. Suppose m,n correspond to 2π/3+2πa,4π/3+2πb, respectively. Then,

m
n
=

2π/3+2πa
4π/3+2πb

=
1+3a
2+3b

=⇒ 3(mb−na) = n−2m.

Thus, there exist such integers a,b if and only if 3 | n− 2m (cf. Bezout’s lemma). In the other case m,n
correspond to 4π/3+ 2πb,2π/3+ 2πa, respectively, the same argument shows that there exist such integers
a,b if and only if 3 | m−2n. In either case, the integers a,b exist if and only if m,n are congruent to 1 (mod 3)
or 2 (mod 3) in some order.
Now, suppose 100≥m> n are positive integers, not necessarily coprime. The pair (m,n) satisfies the conditions
of the problem if and only if the pair

(
m

gcd(m,n) ,
n

gcd(m,n))
)

satisfies the (mod 3) conditions listed above. If m,n
are not both divisible by 3, then dividing by gcd(m,n) certainly preserves the (mod 3) conditions. Thus, we
need only do casework on the possible 3-adic valuations ν3 ∈ {0,1,2,3} of gcd(m,n) (that is, ν3 is the exponent
of 3 in the prime factorization of gcd(m,n)).
There are 34 choices of an integer k such that 0 ≤ 3k + 1 ≤ 100, and 33 choices of an integer l such that
0 ≤ 3l + 2 ≤ 100. Then, these 34 · 33 pairs (k, l) are in bijection with valid pairs (m,n) corresponding to
ν3 = 0. By repeating this counting argument, we see that ν3 = 1,2,3 give rise to 11 ·11,4 ·4,1 ·1 pairs (m,n),
respectively. The answer is 34 ·33+11 ·11+4 ·4+1 ·1 = 1260 .

Problem 11. Let ABC be a triangle and let ω be the circle passing through A,B,C with center O. Lines lA, lB, lC
are drawn tangent to ω at A,B,C respectively. The intersections of these lines form a triangle XY Z where X is
the intersection of lB and lC, Y is the intersection of lC and lA, and Z is the intersection of lA and lB. Let P be the
intersection of lines OX and Y Z. Given ∠ACB = 3

2∠ABC and AC
AB = 15

16 , find ZP
Y P .

Proposed by August Chen

1Of course, for the latter three values q = 32,5,11, one may also appeal to the primitive root theorem
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Solution:
63
32

.

First, we claim that ∠C in △ABC is obtuse.

B
C

A

O

X

Y

Z

P

Let x = 1
2∠ABC ∈ (0,90◦). We have

15
16

=
AC
AB

=
sin2x
sin3x

=
2sinxcosx

3sinx−4sin3 x
=

2cosx
3−4sin2 x

=
2cosx

4cos2 x−1
=⇒ 60cos2 x−15 = 32cosx.

The resulting quadratic has roots 5
6 and −3

10 , so cosx = 5
6 . Now we can compute

cosB = cos2x = 2cos2 x−1 =
25
18

−1 =
7
18

cosC = cos3x = 4cos3 x−3cosx =
125
54

− 5
2
=− 5

27
.

Thus, ∠C is obtuse. Note that OX is the (internal) angle bisector of ∠BXC, i.e. the external angle bisector
of ∠ZXY , so by the angle bisector theorem we just want to find XZ

XY . Note ∠XY Z = 180◦−∠AYC, ∠AYC =
180◦−∠COA = 180◦−2∠B, so we have ∠XY Z = 2∠B. On the other hand, ∠Y ZX = 180◦−∠AOB, ∠AOB =
2(180◦−∠ACB), so we have ∠Y ZX = 2∠ACB−180◦. Therefore, we have

XZ
XY

=
sin(∠XY Z)
sin(∠Y ZX)

=− sin2B
sin2C

=− sinB
sinC

· cosB
cosC

=
15
16

· 7
18

· 27
5

=
63
32

.

Problem 12. Compute the remainder when
∑

1≤a,k≤2021
ak

is divided by 2022 (in the above summation a,k are integers).

Proposed by Jeck Lim

Solution: 1649 .
First recall the following lemma:
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Lemma 1: Let p be a prime, k a positive integer. Then, ∑
p−1
a=0 ak is congruent to 0 (mod p) if (p− 1) ∤ k;

otherwise, ∑
p−1
a=0 ak is congruent to −1 (mod p).

Proof 1: The case (p−1) | k follows from Fermat’s theorem, so assume otherwise. Let q be a primitive root of
p, so that {1,2, . . . , p−1}= {1,q, . . . ,qp−2} modulo p. Then,

p−1

∑
a=0

ak =
p−2

∑
j=0

q jk =
q(p−1)k −1

qk −1

and since p ∤ qk −1, we see by Fermat’s theorem that the RHS is indeed a multiple of p.
Throughout what follows let a,k be positive integers not greater than 2021. Write Sk := ∑

2021
a=1 ak; we want to

find S := ∑1≤a,k≤2021 ak = ∑
2021
k=1 Sk modulo 2022. Since 2022 = 2 · 3 · 337, it is enough to consider S modulo

p = 2,3,337 by the CRT. For p = 2, notice that for 1 ≤ a,k ≤ 2021, ak is odd if and only if a is odd, and this
occurs for 1011 ·2021 such pairs (a,k) (hence an odd number of such pairs), so S is odd.
For p = 3, we have p−1 | k if and only if k is even. By applying Fermat’s theorem, notice Sk is 674 ·∑2

a=0 ak

modulo 3. By the above lemma, in the case k is odd, Sk is congruent to 0 (mod 3); in the case k is even, Sk is
congruent to −1 ·674 ≡ 1 (mod 3). There are 1010 such even k, so S ≡ 1010 ≡ 2 (mod 3).
Finally, for p = 337, we have p−1 | k if and only if k is a multiple of 336. Again by Fermat’s theorem, notice Sk
is 6 ·∑336

a=0 ak modulo 337. In case k is a multiple of 336, this is congruent to −1 ·6 ≡−6 (mod 337); otherwise,
this is congruent to 0 (mod 337). There are 6 such k that are multiples of 336, so S ≡−6 ·6 ≡−36 (mod 337).

Putting everything together, we compute S ≡ 1649 (mod 2022).

Problem 13. Consider a 7×2 grid of squares, each of which is equally likely to be colored either red or blue.
Madeline would like to visit every square on the grid exactly once, starting on one of the top two squares and
ending on one of the bottom two squares. She can move between two squares if they are adjacent or diagonally
adjacent. What is the probability that Madeline may visit the squares of the grid in this way such that the
sequence of colors she visits is alternating (i.e., red, blue, red, . . . or blue, red, blue, . . . )?

Proposed by Mathus Leungpathomaram

Solution:
43

1024
.

Lemma 1: There is an red-starting, blue-ending alternating path on an n×2 grid if and only if it is possible to
divide the grid into 1×2 and 2×2 rectangles such that each 1×2 rectangle is colored RB or BR and each 2×2
rectangle is colored top row RR and bottom row BB.
Proof 1: First suppose the grid may be divided into 1× 2 and 2× 2 rectangles in this way. We can construct
a red-starting alternating path recursively. Assume every square of the first k ≥ 0 rows of the grid have been
visited by the recursively-constructed alternating path. So far, we have visited an equal number of red and blue
squares, so the next row must be colored RB or BR (corresponding to the 1×2 case) or RR (corresponding to
the 2×2 case). In the former case, we may extend the alternating path to all squares in k+1 rows by appending
the red square and then the blue square of row k+1. In the latter case, row k+2 is necessarily BB, so we may
extend the alternating path to all squares in k+ 2 rows by appending a red square of row k+ 1, a blue square
of row k+ 2, the remaining red square of row k+ 1, and finally the remaining blue square of row k+ 2. This
completes the recursive construction.
Conversely, suppose P is a red-starting alternating path on the n× 2 grid. Again we can apply recursion, this
time to choose the desired rectangles. Suppose the first k ≥ 0 rows of the grid have been partitioned into
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rectangles as described above, and that the first 2k squares visited by P are precisely those of the first k rows.
The next square P visits (square 2k+1) is necessarily red, in row k+1. Then, for square 2k+2, P may either
visit the remaining square in row k+1, which is hence blue, or visit a square in row k+2, which is hence blue.
In the latter case, the squares 2k+ 3 and 2k+ 4 of P must necessarily be the remaining square in row k+ 1
and then the remaining square in row k+2, which are red and blue, respectively. In particular, the former case
shows row k+1 is a 1×2 rectangle colored RB or BR, while the latter case shows rows k+1,k+2 is a 2×2
rectangle colored top row RR and bottom row BB. The recursion is complete.
Let f (n) be the number of red-starting alternating paths on an n×2 grid. We have f (0) = 1, f (1) = 2, and the
above lemma implies we have the recurrence f (n) = f (n− 2)+ 2 f (n− 1). We compute f (7) = 408. Since
alternating paths may start on either color, we double this number to 816. However, we are double counting the
cases where we only fill in 1 by 2 rectangles, of which there are 27 = 128 of, for an actual total of 688 colorings

with an alternating path. Since there are 214 ways to color a 7×2 grid, we obtain an answer of 688
214 =

43
1024

.

Problem 14. Let ABC be a triangle with AB = 8, BC = 10, and CA = 12. Denote by ΩA the A-excircle of ABC,
and suppose that ΩA is tangent to AB and AC at F and E, respectively. Line l ̸= BC is tangent to ΩA and passes
through the midpoint of BC. Let T be the intersection of EF and l. Compute the area of triangle AT B.

Proposed by Brian Yang

Solution:
135

√
7

4
.

Consider a line m ̸= BC parallel to BC and tangent to ΩA at the point Q2.

A

B
C

E

F

V

T

D D′

Q2

M
Q1

We claim T ∈ m. Indeed, let D be the A-intouch point and D′ be the A-extouch point of △ABC. Let M be
the midpoint of BC, and suppose {Q1,Q′

2} = AD∩ΩA such that Q1 is in between A and Q′
2. Notice Q′

2 = Q2,
because the homothety H taking ΩA to the incircle of △ABC maps m to BC, hence maps Q2 to D. Now, note
Q2D′ is the diameter of ΩA orthogonal to BC, so Q1Q2 ⊥ Q1D′. However MD = MD′, so M is the center of
(DQ1D′), implying that MQ1 = MD′ and so Q1 = l ∩ΩA. Now, the polar of A is EF and the polar of Q1 is l,
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so the polar of T is AQ1 = AQ2 (all polars w.r.t. ΩA). Thus, T lies on the polar of Q2, which is precisely m,
showing the desired claim.
Denote by V the image of T under the homothety H . Since H maps Q2 to D (as previously discussed) and
maps E and F to the B- and C-intouch points in △ABC, respectively, we deduce V is the harmonic conjugate of
D with respect to B and C.
We are ready to do computations. Let a,b,c be the side lengths of △ABC and s its semiperimeter. Since DB =
s−b = 3,DC = s−c = 7, we have V B = 15

2 by the cross ratio (V,D;B,C) =−1. Computing [ABC] = 15
√

7 (by
Heron’s formula, for instance), the A-altitude of △ABC has length 2 · [ABC]

a = 3
√

7. Moreover, the A-exradius is
s

s−a = 3 times the inradius (of △ABC), so TA = 3VA. Thus,

[AT B] = 3[AV B] = 3
(

1
2
·3
√

7 · 15
2

)
=

135
√

7
4

.

Problem 15. For any positive integer n, let Dn be the set of ordered pairs of positive integers (m,d) such that d
divides n and gcd(m,n) = 1, 1 ≤ m ≤ n. For any positive integers a,b, let r(a,b) be the non-negative remainder
when a is divided by b. Denote by Sn the sum

Sn = ∑
(m,d)∈Dn

r(m,d).

Determine the value of S396.

Proposed by Brian Yang

Solution: 65460 .
Let φ be Euler’s function, Pn be the set of all positive integers 1 ≤ m < n such that gcd(m,n) = 1, and Tn,d =

∑m∈Pn r(m,d). Note Tn,1 = 0 simply because division by 1 yields no remainder. The critical claim is that for
1 < d | n, we have

Tn,d = ∑
m∈Pn

r(m,d) =
dφ(n)

2
.

We begin with the following lemma:
Lemma 1: Let n > 1 be a positive integer, 1 < d a divisor of n and 1 ≤ m < n a positive integer satisfying
gcd(m,n) = 1. The number of positive integers 1 ≤ m′ < n such that gcd(m′,n) = 1 and m′ ≡ m (mod d)
equals φ(n)

φ(d) .

Proof 1: Let n1 be the largest divisor of n such that n1,d have the same prime divisors, and let n2 =
n
n1

. Then,
notice that n1 and n2 are coprime. Then, for any pair of integers 0 ≤ a1 < n1,0 ≤ a2 < n2, there exists (by
the CRT) a unique integer 1 ≤ m′ ≤ n such that m′ ≡ ai (mod ni), i = 1,2. Thus, a pair (a1,a2) gives rise
to an m′ satisfying the condition of the lemma if and only if gcd(ai,ni) = 1, i = 1,2 (this is equivalent to
gcd(m′,ni) = 1, i = 1,2, or gcd(m′,n) = 1), and a1 ≡ m (mod d). There are n1

d integers 0 ≤ a1 < n1 giving
rise to a1 ≡ m (mod d). For each such choice of a1, we have gcd(a1,n1) = gcd(a1,d) = gcd(m,d) = 1 where
the first equality is justified as n1,d have the same prime divisors. This gives us n1

d possible choices of a1.
On the other hand, there are φ(n2) choices of 0 ≤ a2 < 1 such that gcd(a2,n2) = 1. It follows that the total
number of pairs (a1,a2) (and hence the total number of integers 1 ≤ m′ < n) satisfying the condition of the
lemma) is n1φ(n2)

d . However, note φ(n1)
φ(d) = n1

d as n1,d have the same prime divisors, and φ(n1)φ(n2) = φ(n) by

multiplicativity of φ , so the total number of integers 1≤m′< n satisfying the conditions equals φ(n1)φ(n2)
φ(d) = φ(n)

φ(d) ,
as requested.
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Thus, for each integer a ∈ Pd , there exist φ(n)
φ(d) integers 1 ≤ m < n such that m ≡ a (mod d). That is, each

integer a ∈ Pd appears φ(n)
φ(d) times in the sum Tn,d . Now we consider the set Pd . Start with the case d > 2. For

a ∈ Pd , note that if gcd(a,d) = 1, then d −a ̸= a and gcd(d −a,d) = 1, i.e. the set Pd may be partitioned into
(unordered) pairs (a,d −a) such that the sum of each pair equals d. Thus, the sum of all integers in Pd equals
dφ(d)

2 . This formula also holds in case d = 2. Putting everything together, we deduce that

Tn,d = ∑
m∈Pn

r(m,d) =
φ(n)
φ(d)

· dφ(d)
2

=
dφ(n)

2

for 1 < d | n, as claimed. To finish, denote by σ(n) the sum of the positive divisors of n. Then, we have

Sn = ∑
1≤d|n

Tn,d =−φ(n)
2

+ ∑
1≤d|n

dφ(n)
2

=
φ(n)

2
(σ(n)−1).

Now, let n = 396 = 22 ·32 ·11. Since φ(396) = 120 and σ(396) = (1+2+22)(1+3+32)(1+11) = 1092, the
answer is S396 = 65460 .
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