
Team Round
Problem 1. Let ABC be an equilateral triangle of side length 6. Points D, E and F are on sides AB, BC,
and AC respectively such that AD = BE = CF = 2. Let circle O be the circumcircle of DEF , i.e. the circle
that passes through points D,E, and F . What is the area of the region inside triangle ABC but outside
circle O?

Solution. 6
√
3− 2π

We will use complementary counting. The area of ABC is 62
√
3

4 = 9
√
3. The region inside both the

triangle and the circle consist of 3 triangles and 3 sectors of circle O. Each of the triangles has a base of
length 2 on one of the side lengths of ABC and a height of

√
3, so they each have area

√
3, and together

have an area of 3
√
3. The triangles each cut out 60 degrees from circle O, meaning the three sectors

that are in both the triangle and the circle together form a 180 degree sector of O. The radius of circle
O is the hypotenuse of the small triangles, so circle O has radius 2 and the sectors together have area
42 · π · 12 = 8π. Thus, the area inside both circle O and triangle ABC is 3

√
3 + 2π, so subtracting from

the area of ABC, we find that the area inside triangle ABC but outside circle O is 6
√
3− 2π.

Problem 2. Alex, Bob, Charlie, Daniel, and Ethan are five classmates. Some pairs of them are friends. How
many possible ways are there for them to be friends such that everyone has at least one friend, and such that
there is exactly one loop of friends among the five classmates?

Note: friendship is two-way, so if person x is friends with person y then person y is friends with person x.
Casework on max length of the loop, the possible cases are 3, 4, 5.

Solution. 232

1. If it is 5: adding any more edges causes more than one loop, hence we have 5!/5 · 12 = 12 possibilities
in this case.

2. If it is 4: we can choose the loop of 4 people in exactly
(
5

4

)
· 4!/4 · 12 = 15 ways. Adding any edge

between two vertices in the loop creates another loop. Let v be the vertex in the graph not in the
loop. Since v must be connected to another vertex but as the graph no more loops, v must be
connected to 1 other vertex, and there are 4 choices for this vertex. In total there are 15 · 4 = 60
possibilities in this case.

3. If it is 3: we can choose the loop of 3 people in exactly
(
5

3

)
· 1 = 10 ways. Let the two vertices in

the graph not in the loop be v and u. If v and u are not connected, then note each of v, u must
be connected to exactly one vertex in the loop, since the graph is connected. This gives 32 = 9
possibilities. If v and u are connected, we do more cases. If u, v are connected to each other, we
have 1 possibility. Both u, v cannot be both connected to a vertex in the loop. If v is not connected
to a vertex in the loop but u is, this gives 3 possibilities. u not being connected to a vertex in
the loop but v being connected is the same case. In total there are 10 · (9 + 3 + 3 + 1) = 160
possibilities in this case.

In total the answer is 12 + 60 + 160 = 232.

Problem 3. A frog is jumping between lattice points on the coordinate plane in the following way: On each
jump, the frog randomly goes to one of the 8 closest lattice points to it, such that the frog never goes in the
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same direction on consecutive jumps. If the frog starts at (20, 19) and jumps to (20, 20), then what is the
expected value of the frog’s position after it jumps for an infinitely long time?

Solution. (20, 1598 )

Shift the coordinate system such that the frog is at the origin. Now, the expected value of the frog’s
final position if the frog’s second jump in a direction θ is the opposite of the expected value if the frog’s
second jump is in the direction −θ. Thus, all the expected values cancel out except for the expected
value if the frog moves down. Since the frog moves down with a probability 1

7 , the expected value of the
frog’s final position is 1

7 · Ethe expected value if the frog moves to (0,-1)]. If the expected value of the
frog’s final position is (0, x), then x = 1

7 (−1− x), so 7x = −1− x→ 8x = −1→ x = − 1
8 . Shifting the

coordinates back, the frog’s expected position as it infinitely jumps is (20, 20− 1
8 ) = (20, 1598 ).

Problem 4. Let ∆ABC be a triangle such that the area [ABC] = 10 and tan(∠ABC) = 5. If the smallest

possible value of
(
AC
)2

can be expressed as −a+ b
√
c for positive integers a, b, c, what is a+ b+ c?

Solution. 42

Let t = tanB,K = [ABC]. Then 1
2ac sinB = K =⇒ ac cosB = 2K

t =⇒ b2 = a2 + c2 − 2ac cosB =

a2 + c2 − 4K
t ≥ 2ac− 4K

t . So the answer is minimized when a = c. Then compute sin2 B2 =
√
26−1
2
√
26

by
half angle, so 1

2a
2 sinB = 10 =⇒ a2 = 4

√
26 =⇒ b2 = (2a sin B

2 )
2 = 8

√
26− 8.

Problem 5. A tournament has 5 players and is in round-robin format (each player plays each other exactly
once). Each game has a 1

3 chance of player A winning, a 1
3 chance of player B winning, and a 1

3 chance of
ending in a draw. The probability that at least one player draws all of their games can be written in simplest
form as m

3n where m,n are positive integers. Find m+ n.

Solution. 3411
We use the principle of inclusion-exclusion. The probability of one person drawing all of their matches is
1
35 . In general we want to know the probability of some k players drawing all their games. There are

(
5
k

)
ways to choose the drawing players. Collectively these players participate in

(
5
2

)
−
(
k−1
2

)
= 10−

(
k−1
2

)
games. Hence, the probability that k players draw all their matches is (5k)

3
10−(k−1

2 )
. Therefore, by

inclusion-exclusion, the probability we are looking for is(
5
1

)
34
−
(
5
2

)
37

+

(
5
3

)
39
−
(
5
4

)
310

+

(
5
5

)
310

=
1

310

(
5 · 36 − 10 · 33 + 10 · 3− 5 + 1

)
=

1

310
(
5 · 729− 270 + 30− 4)

)
=

1

310
(
3645− 244)

)
=

3401

310

From which we get 3401 + 10 = 3411 .
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Problem 6. Compute
2019∏
i=1

(22
i

− 22
i−1

+ 1).

Solution. 22
2020

+22
2019

+1
7

Multiplying the product by 7 = (22 +2+ 1) and repeatedly using the identity (x2 − x+1)(x2 + x+1) =
x4 + x2 + 1, we have

(22 + 2 + 1)

2019∏
i=1

(22
i

− 22
i−1

+ 1) = (22 + 2 + 1)(22 − 2 + 1)

2019∏
i=2

(22
i

− 22
i−1

+ 1)

= (24 + 22 + 1)

2019∏
i=2

(22
i

− 22
i−1

+ 1)

= (24 + 22 + 1)(24 − 22 + 1)

2019∏
i=3

(22
i

− 22
i−1

+ 1)

= · · ·

= (22
2019

+ 22
2018

+ 1)(22
2019

− 22
2018

+ 1)

= 22
2020

+ 22
2019

+ 1

thus yielding the answer of 22
2020

+22
2019

+1
7 .

Problem 7. Let S be the set of all positive integers n satisfying the following two conditions:

• n is relatively prime to all positive integers less than or equal to n
6 .

• 2n ≡ 4 mod n

What is the sum of all numbers in S?

Solution. 16 , 23
By Fermat’s Little Theorem, ap ≡ a mod p so no primes greater than 2 are in S. If n > 100 then the
first condition means that n is relatively prime to all integers less than

√
n, so n is prime, meaning that

all elements of S are less than 100. Now, we can list all the numbers less than 100 that satisfy the first
condition and are not prime. This yields a fairly small set of potential elements of S: 1,2,4,6,8,9,10,15,25.
We can calculate 2n mod n for each of these values by calculating 2n−φ(n) mod n, which is a relatively
simple calculation, and we find that the only numbers that are elements of S are 1, 2, 4, 6,and 10, so the
sum of these elements is 23.

Problem 8. Consider an infinite sequence of reals x1, x2, x3, . . . such that x1 = 1, x2 = 2
√
3

3 and with the
recursive relationship

n2(xn − xn−1 − xn−2)− n(3xn + 2xn−1 + xn−2) + (xnxn−1xn−2 + 2xn) = 0

Find x2019. 1

1This problem was thrown out due to an error in the problem statement. The correct recursive relationship should have been:
n2(xn − xn−1 − xn−2)− n(3xn − 2xn−1 − xn−2) + (2xn − xnxn−1xn−2) = 0.
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Solution. 2019
√
3 + 4038

The key insight is to notice that the recursive relationship rewrites as, upon solving for xn in terms of
constants and other variables,

xn = n ·
xn−1

n−1 + xn−2

n−2
1− xn−1xn−2

(n−1)(n−2)

Thus x1/1, x2/2, x3/3, . . . forms a sequence given by arctan(xnn ) = arctan(xn−1

n−1 )+arctan(xn−2

n−2 ). Looking
at initial terms of the sequence, we see that 1

π arctan(xnn ) forms the following pattern with period 24:

1/4, 1/6, 5/12,−5/12, 0,−5/12,−5/12, 1/6,−1/4,−1/12,−1/3,−5/12,

1/4,−1/6, 1/12,−1/12, 0,−1/12,−1/12,−1/6,−1/4,−5/12, 1/3,−1/12

Thus x2019 = 2019 · tan( 5π12 ) = 2019(
√
3 + 2) = 2019

√
3 + 4038.

Problem 9. Consider a rectangle with length 6 and height 4. A rectangle with length 3 and height 1 is
placed inside the larger rectangle such that it is distance 1 from the bottom and leftmost sides of the larger
rectangle.

We randomly select one point from each side of the larger rectangle, and connect these 4 points to form a
quadrilateral. What is the probability that the smaller rectangle is strictly contained within that quadrilat-
eral?

Solution. 9−ln 3−3 ln 2
18

The problem is equivalent to the following: randomly select one point from the bottom side and one
point from the top side of the larger rectangle. Draw two lines connecting the point on the bottom side
to the two lower vertices of the smaller rectangle, and two lines connecting the point on the top side to
the two upper vertices of the smaller rectangle. Consider the two intersections of the lines connecting
the top and bottom point to the two left points of the smaller rectangle with the left side of the larger
rectangle, and look at the region above the intersection with the upper line and below the lower line.
Consider the same process for the right side of the larger rectangle. What is the probability that both of
these regions are nonempty?

To this end place the bottom left corner of the larger rectangle at the origin of the Cartesian plane
and put the bottom side of the larger rectangle as the positive x axis and the left side of the larger
rectangle as the positive y axis. Suppose the bottom point is distance a from the rectangle’s left side
and suppose the top point is distance b from the rectangle’s left side. Then the two lines intersecting
the left side of the larger rectangle are y = −1

a−1x + a
a−1 , y = 2

b−1x + 2b−4
b−1 going through the bottom

and top points respectively, and the two lines intersecting the right side of the larger rectangle are
y = 1

4−ax−
a

4−a , y = −2
4−bx+ 16−2b

4−b going through the bottom and top points respectively. From here we
can find the intersections on the left side to be a

a−1 ,
2b−4
b−1 and 6−a

4−a ,
4−2b
4−b respectively.

So, what we want to find is P ( a
a−1 > 2b−4

b−1 ) ↔ P ( 1
a−1 > b−3

b−1 ) ↔ P ( (2b+3a)−(ab+4)
(a−1)(b−1) > 0) and that

P ( 6−a4−a >
4−2b
4−b )↔ P ( 2

4−a >
−b
4−b )↔ P ( 8+2b−ab

(4−a)(4−b) > 0). Since a, b are chosen uniformly between 0 and 6,
upon graphing we find that this is equivalent to finding the area of the plane with a as the x axis and
0 ≤ a ≤ 6 and b as the y axis with 0 ≤ b ≤ 6, with the conditions that 1 < a < 4, 1 < b < 4, or a > 4
and 3a−4

a−2 > b > 8
a−2 , or a < 1 and 3a−4

a−2 > b > 1, or a < 3a−4
a−2 and b > 1.
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We compute this area to be

32 +

(∫ 4/3

0

3x− 4

x− 2
dx− 1

)
+

∫ 6

4

3x− 4− 8

x− 2
dx = 9 + (−1 + 4 + 2 ln

1

3
) + 3(2− 2 ln 2)

So our final answer is 18−2 ln 3−6 ln 2
36 = 9−ln 3−3 ln 2

18 .

Problem 10. n players are playing a game. Each player has n tokens. Every turn, two players with at least
one token are randomly selected. The player with less tokens gives one token to the player with more tokens.
If both players have the same number of tokens, a coin flip decides which player receives a token and which
player gives a token. The game ends when one player has all the tokens. If n = 2019, suppose the maximum
number of turns the game could take to end can be written as 1

d (a · 2019
3 + b · 20192 + c · 2019) for integers

a, b, c, d. Find abc
d .

Solution. − 11
2

We claim that the answer is (11n−1)(n)(n−1)
24 for odd n.

Let ti be the number of tokens of the player with the ith lowest number of tokens. We first de-
fine the entropy of the game state as S =

∑n
i=1 (ti − n)

2. We note that for a move between players i
and j, S always increases, since:

(ti − 1− n)2 + (tj + 1− n)2 = (ti − n)2 + (tj − n)2 + 2 · (tj − ti) + 2

This means that S increases by 2 · (tj − ti) + 2, which is always at least 2 since tj ≥ ti.

Let a game state be monotonous if for all i 6= j, if 0 < ti, tj , then ti 6= tj . Let C be the monotonous
state with minimum S of SC . We note that all monotonous states are reachable from C.

C can be reached in at most SC
2 turns. This is because the initial state has S = 0 and C has

S = SC , and the minimum entropy increase per turn is 2.
For odd n:

SC
2

=
2 ·
∑n−1

2
i=1 i

2

2
=

n−1
2 ·

n+1
2 · n

6
=

(n+ 1)(n)(n− 1)

24

Once we obtain C, we note that the ti tokens of player i can go through at most n− i turns per token
before reaching player n. We can now calculate the maximum number of turns to game completion from
C, which is

∑n
i=1 ti · (n− i).

For odd n:

n∑
i=1

(
i+

n− 1

2

)
· (n− i) =

n+ 1

2

n∑
i=1

i

−
 n∑
i=1

i2

+

n− 1

2
· n

n∑
i=1

1


=
n(n+ 1)2

4
− n(n+ 1)(2n+ 1)

6
+
n2(n− 1)

2
=

(10n− 2)(n)(n− 1)

24

Finally, we compute the total number of turns to game completion.
For odd n:

(10n− 2)(n)(n− 1)

24
+

(n+ 1)(n)(n− 1)

24
=

(11n− 1)(n)(n− 1)

24
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Plugging in n = 2019, we have:

(11 · 2019− 1)(2019)(2019− 1)

24
=

1

24
· (11 · 20193 − 12 · 20192 + 1 · 2019)

Hence d = 24, a = 11, b = −12, c = 1. So:

abc

d
=

11 · (−12) · 1
24

= −11

2

.
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Individual Round
Problem 1. Consider a cube with side length 2. Take any one of its vertices and consider the three midpoints
of the three edges emanating from that vertex. What is the distance from that vertex to the plane formed by
those three midpoints?

Solution.
√
3
3

Consider the tetrahedron formed by the three midpoints and the given vertex. Calculate the volume of
this tetrahedron in two ways. Letting the answer be x we have 1

6 · 1
3 = 1

3 · x ·
√
2
2√

3
4 =⇒ x =

√
3
3 .

Problem 2. Digits H, M , and C satisfy the following relations where ABC denotes the number whose digits
in base 10 are A, B, and C.

H ×H =M × C + 1

HH ×H =MC × C + 1

HHH ×H =MCC × C + 1

Find HMC.

Solution. 435
We have

H2 =MC + 1

11H2 = (10M + C)C + 1

Subtracting 10 times the first equation from the second, we get

H2 · (11− 10) = 10MC + C2 + 1− 10MC − 10

C2 −H2 = 9

which has the unique solution H = 4, C = 5 (corresponding to a 3-4-5 Pythagorean triple) over digits
0-9. From here it is easy to find M = 3, hence the answer HMC = 435.

Problem 3. Two players play the following game on a table with fair two-sided coins. The first player starts
with one, two, or three coins on the table, each with equal probability. On each turn, the player flips all the
coins on the table and counts how many coins land heads up. If this number is odd, a coin is removed from
the table. If this number is even, a coin is added to the table. A player wins when he/she removes the last
coin on the table. Suppose the game ends. What is the probability that the first player wins?

Solution. 2
3

Note the parity of the number of coins when each player is removing a coin is fixed based on the initial
number of coins on the table. Since the game ends, the number of coins when the first player removes a
coin must be odd before the removal and even after, since 0 is even. Moreover, if this is the case, because
we are given that the game ends, then the first player will win. Thus the first player is guaranteed to
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win if and only if the number of coins at the start is odd, so the answer is 2
3 .

Problem 4. Cyclic quadrilateral [BLUE] has right ∠E. Let R be a point not in [BLUE]. If [BLUR] =
[BLUE], ∠ELB = 45◦, and EU = UR, find ∠RUE.

Solution. 90◦

[BLUR] = [BLUE] =⇒ [BUE] = [BUR]. Let dE be the distance from E to BU and dR be the
distance R to BU . Thus dE = dR, so BU and ER are parallel. Thus ∠UER = ∠BUE = ∠BLE = 45◦.
EUR is isosceles so ∠RUE is 90◦.

Problem 5. There are two tracks in the x, y plane, defined by the equations

y =
√
3− x2 and y =

√
4− x2

A baton of length 1 has one end attached to each track and is allowed to move freely, but no end may be
picked up or go past the end of either track. What is the maximum area the baton can sweep out?

Solution. 5π
12

Check that the tracks are semicircles in the positive y plane. Note the baton must be always tangent
to the inner track since the baton and the radii of the two semicircular tracks from a 1−

√
3− 2 right

triangle. We cannot rotate the baton, so we the point of the baton on the inner track must go from 0◦

to 150◦ on the inner track, and due to the tangency, from the inner point of the baton the outer point of
the baton has at most 2 valid positions. Thus the answer is (22 −

√
3
2
)π − (

√
3
2 −

3π
12 )− ( 4π12 −

√
3
2 ) = 5π

12 .

Problem 6. For integers 1 ≤ a ≤ 2, 1 ≤ b ≤ 10, 1 ≤ c ≤ 12, 1 ≤ d ≤ 18, let f(a, b, c, d) be the unique integer
between 0 and 8150 inclusive that leaves a remainder of a when divided by 3, a remainder of b when divided
by 11, a remainder of c when divided by 13, and a remainder of d when divided by 19. Compute∑

a+b+c+d=23

f(a, b, c, d).

Solution. 945516
Note if a+ b+ c+ d = 23 then (3− a) + (11− b) + (13− c) + (19− d) = 46− (a+ b+ c+ d) = 23 and
that f(a, b, c, d) = 8151− f(3− a, 11− b, 13− c, 19− d) as a, b, c, d 6= 0. Hence the answer is half the
number of nonzero residues a, b, c, d modulo 3, 11, 13, 19 respectively that sum to 23 times 8151.

To count the number of such a, b, c, d we do casework.

• 11 ≤ d ≤ 18: we have a + b + c = 23 − d. Doing cases on c, 2 ≤ a + b ≤ 22 − d which yields
1, 2, . . . , 2 solutions for a, b in each case as 1 ≤ a ≤ 2. Thus there are −2d+ 41 solutions for each
case.

• 9 ≤ d ≤ 10: we have a+ b+ c = 23− d. Doing cases on c, 2 ≤ a+ b ≤ 12 which yields 1, 2, . . . , 2, 1
solutions for a, b in each case. Thus there are 9 · 2 + 2 = 20 solutions for each case.

• 1 ≤ d ≤ 8: we have a + b + c = 23 − d. Doing cases on c, −d + 11 ≤ a + b ≤ 12 which yields
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2, . . . , 2, 1 solutions for a, b in each case. Thus there are 2d+ 3 solutions in each case.

So the number of such a, b, c, d is 2(5 + 7 + · · ·+ 19 + 20) = 2(102 − 4) + 40 = 232, hence our answer is
232
2 · 8151 = 944516.

Problem 7. Compute cos(θ) if
∑∞
n=0

cos(nθ)
3n = 1.

Solution. 1
3

We have cos(nθ) = ei(nθ)+e−i(nθ)

2 so

∞∑
n=0

cos(nθ)

3n
=

∞∑
n=0

(
ei(nθ)

2 · 3n
+
e−i(nθ)

2 · 3n

)

=
1

2

(
1

1− eiθ

3

+
1

1− e−iθ

3

)

=
1

2

(
2− 2 cos θ

3

1 + 1
9 −

1
3 (e

iθ + e−iθ)

)

=
9− 3 cos θ

10− 6 cos θ

Thus 9− 3 cos θ = 10− 6 cos θ =⇒ cos θ = 1
3 .

Problem 8. How many solutions does this equation
(
a+b
2

)2
=
(
b+c
2019

)2
have in positive integers a, b, c that

are all less than 20192?

Solution. 4078384
By CRT since 2019 = 3 · 673 both of which are prime, we can prove that all solutions are given by
a = 2m− b, b, c = 2019m− b for some positive integer m.

If m ≤ 2019 then there are 2m− 1 choices for b for fixed m, hence
∑2019
i=1 (2i− 1) = 20192 solutions.

If m > 2019, note we must have 2019m− b < 20192 =⇒ 2019(m− 2019) < b < 2m. Testing for when
this gives a positive amount of valid cases for m we find that we must have m = 2020, 2021. m = 2020
gives 2020, . . . , 4039 as valid values for b, so 2020 valid values for b. m = 2021 gives 4039, 4040, 4041 as
valid values for b, so 3 valid values for b.

In total the answer is 2023 + 20192 = 4 + 2019 · 2020 = 4078384 solutions.

Problem 9. Consider a square grid with vertices labeled 1, 2, 3, 4 clockwise in that order. Fred the frog is
jumping between vertices, with the following rules: he starts at the vertex label 1, and at any given vertex he
jumps to the vertex diagonally across from him with probability 1

2 and the vertices adjacent to him each with
probability 1

4 . After 2019 jumps, suppose the probability that the sum of the labels on the last two vertices
he has visited is 3 can be written as 2−m − 2−n for positive integers m,n. Find m+ n.
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Solution. 2024
Let p(a, b) equal the probability that Fred is at the vertex with label a at time b. Now by induction one
can prove that the distribution of states (p(1, n), p(2, n), p(3, n), p(4, n)) equals ( 2

n−1+1
2n+1 , 14 ,

2n−1−1
2n+1 , 14 ) for

even n and ( 2
n−1−1
2n+1 , 14 ,

2n−1+1
2n+1 , 14 ) for odd n. Seeing this is easier by looking at the transition matrix.

Finally we can compute the answer:

p(1, 2018) · 1
4
+ p(2, 2018) · 1

4
=

22017 − 1

22021
+

1

16
=

22017 + 22017

22021
− 22021 = 2−3 − 2−2021 =⇒ 2024

Problem 10. The base ten numeral system uses digits 0-9 and each place value corresponds to a power of
10. For example,

2019 = 2 · 103 + 0 · 102 + 1 · 101 + 9 · 100.

Let φ =
1 +
√
5

2
. We can define a similar numeral system, base φ, where we only use digits 0 and 1, and each

place value corresponds to a power of φ. For example,

11.01 = 1 · φ1 + 1 · φ0 + 0 · φ−1 + 1 · φ−2.

Note that base φ representations are not unique, because, for example, 100φ = 11φ. Compute the base φ
representation of 7 with the fewest number of 1s.

Solution. 10000.0001φ

The key insight is to notice that 1 = 1φ = 0.11φ. In general, we can replace any instance of φn + φn+1

with φn+2 or vice versa.

Using these facts, we see that

2 = 1 + 1 = 1φ + .11φ = 1.11φ = 10.01φ = 10.0011φ

Therefore,

4 = 2 + 2 = 1.11φ + 10.0011φ = 11.1111φ = 100.1111φ

5 = 4 + 1 = 100.1111φ + 1φ = 101.1111φ = 110.0111φ

6 = 5 + 1 = 110.0111φ + 1φ = 111.0111φ = 1001.0111φ = 1001.1001φ = 1010.0001φ

7 = 6 + 1 = 1010.0001φ + 1φ = 1011.0001φ = 1100.0001φ = 10000.0001φ

It is quite clear that no base φ representation of 7 with only one 1 exists, because 7 is not a power of φ.
Therefore, this is minimal.

Problem 11. Let ABC be a triangle with ∠BAC = 60 and with circumradius 1. Let G be its centroid and
D be the foot of the perpendicular from A to BC. Suppose AG =

√
6
3 . Find AD.

Solution. 3
4

By Stewart’s Theorem we get AG = 2
3 ·
√

2b2+c2−a2
4 =

√
2b2+2c2−a2

3 =⇒ 2b2+2c2−a2 = 6. By equating
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the area of ABC in two ways we get 1
2a · AD = 1

2bc sinA = abc
4R =⇒ a =

√
3, AD = bc

2 . By Law of
Cosines we get b2 + c2 − 2bc cosA = a2 =⇒ b2 + c2 − bc = 3. Thus as we have b2 + c2 = 9

2 this means
bc = 3

2 so the answer is 3
4 .

Problem 12. Let f(a, b) be a function with the following properties for all positive integers a 6= b:

f(1, 2) = f(2, 1)

f(a, b) + f(b, a) = 0

f(a+ b, b) = f(b, a) + b

Compute:
2019∑
i=1

f(4i − 1, 2i) + f(4i + 1, 2i)

Solution. 22021 − 6
Just keep applying the formulae until the answer is obtained. The keys here are in realizing that f is
anti-commutative, and that f(a+ 2b, b) = f(a, b). After some more math we have f(4i − 1, 2i) = 2i+1

for i > 1 and f(4i + 1, 2i) = 0.

Problem 13. You and your friends have been tasked with building a cardboard castle in the two-dimensional
Cartesian plane. The castle is built by the following rules:

1. There is a tower of height 2n at the origin.

2. From towers of height 2i ≥ 2, a wall of length 2i−1 can be constructed between the aforementioned
tower and a new tower of height 2i−1. Walls must be parallel to a coordinate axis, and each tower must
be connected to at least one other tower by a wall.

If one unit of tower height costs $9 and one unit of wall length costs $3 and n = 1000, how many distinct
costs are there of castles that satisfy the above constraints? Two castles are distinct if there exists a tower or
wall that is in one castle but not in the other.

Solution. 4 · 31000 − 5 · 21000 + 1002
We claim that the general formula is 4 · 3n − 5 · 2n + n+ 2.

Note that the central tower of height 2n must get built. After this central tower, we can associate to
each tower, the wall built to create it. Together, these cost 12·[height of tower], so we are interested in
the number of distinct total castle heights (i.e. the sum of heights of each tower in the castle) that can
be created.

We claim that for all total castle heights between 2n+1 and the max castle height are achievable. This is
true because at each branch there are 3 smaller towers with half the cost, so we have enough degrees of
freedom to reach every cost. After the central towers, the next smallest towers that can be built are
of height 2n−1, 2n−2, . . . 2, 1. Therefore, there are n+1 castles with heights between 2n and less than 2n+1.

Therefore the number of distinct castle heights is n + 2 + M − 2n+1, where M is the max height
of a castle. We can solve for M recursively. Let an be the maximum castle height of one of the four
branches of a castle (i.e. the max cost of all towers out of its northern tower, for instance). When all
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possible towers are built we have one castle of height 2n−1 and three additional branches of height an−1
each. Thus an = 3an−1 + 2n−1.

We can solve this recursion by writing, an − 3an−1 = 2n−1 = 2 ∗ 2n−2 = 2(an−1 − 3an−2) and
thus an − 5an−1 + 6an−2. Using the characteristic polynomial this can be solved as an = u2n − v3n.
Plugging in the initial conditions, a1 = 1 and a2 = 5 we get u = −1, v = 1 and therefore, an = 3n − 2n.
Hence M = 2n + 4an = 4 · 3n − 3 · 2n and the final answer is M − 2n+1 + n+ 2 = 4 · 3n − 5 · 2n + n+ 2.
Plugging in n = 1000 gives the desired answer.

Problem 14. For n digits, (a1, a2, . . . , an) with 0 ≤ ai < n for i = 1, 2, . . . , n and a1 6= 0 define (a1a2 . . . an)n
to be the number with digits a1, a2, . . . an written in base n.

Let Sn = {(a1, a2, a3, ..., an)| (n+ 1)| (a1a2a3...an)n, a1 ≥ 1} be the set of n-tuples such that (a1a2 . . . an)n
is divisible by n+ 1.

Find all n > 1 such that n divides |Sn|+ 2019.

Solution. {2, 5, 101, 505, 2018}

We know that |Sn| can be approximated by bn
n−nn−1+c
n+1 c for some constant c.

We then notice that c depends only on if n is even or odd. We consider two cases of n, odd or even.

For n odd, we know that nn ≡ −1 mod (n+ 1) and nn−1 ≡ 1 mod (n+ 1). Therefore, |Sn| must be
equal to nn−nn−1+2

n+1 −1 = nn−nn−1−n+1
n+1 since c must be 2 to make the numerator become 0 mod (n+1).

The minus 1 is from taking off the floor function.

Therefore, for n odd, n|n
n−nn−1−n+1

n+1 + 2019. which imply that n|2019 + 1 when n is odd.

Similarly for n even, we get |Sn| must be equal to nn−nn−1+n−1
n+1 and therefore, n|2019− 1 when n is even.

Problem 15. Let P be the set of polynomials with degree 2019 with leading coefficient 1 and non-leading
coefficients from the set C = {−1, 0, 1}. For example, the function f = x2019 − x42 + 1 is in P, but the
functions f = x2020, f = −x2019, and f = x2019 + 2x21 are not in P.

Define a swap on a polynomial f to be changing a term axn to bxn where b ∈ C and there are no terms with
degree smaller than n with coefficients equal to a or b. For example, a swap from x2019 + x17 − x15 + x10 to
x2019 + x17 − x15 − x10 would be valid, but the following swaps would not be valid:

x2019 + x3 to x2019

x2019 + x3 to x2019 + x3 + x2

x2019 + x2 + x+ 1 to x2019 − x2 − x− 1

Let B be the set of polynomials in P where all non-leading terms have the same coefficient. There are p
polynomials that can be reached from each element of B in exactly s swaps, and there exist 0 polynomials
that can be reached from each element of B in less than s swaps.

Compute p · s, expressing your answer as a prime factorization.
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Solution. 2201832

Note that there is a bijection between P and the set of positions reachable in the Tower of Hanoi puzzle,
each polynomial representing one position. The state space of the Tower of Hanoi can be further reduced
to a graph in the shape of a serpenski triangle and the problem reduces to finding the number of points
that have the smallest maximum distance from a vertex of the triangle and the smallest maximum
distance, which are 6 and 3 · 22017 respectively. We multiply those numbers to obtain 2201832.
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Tiebreaker Round
Problem 1. Let ABC be a triangle ∠BAC = 60◦,∠ABC = 70◦,∠ACB = 50◦. Let D,E, F be the feet of
the altitudes from A,B,C respectively. Suppose AD = 1

2 . Let O be the circumcenter of ABC. Suppose line
AO intersects segment BC at point O′. Find AO′.

Solution. 1
Let T = EF ∩BC. Remark ∠AO′C = 180− (90− C)−B = 90 + C −B = B as 2B = 90 + C. Thus
AO′ = AB = AD

cos 60 = 1.

Problem 2. Let r1, r2, r3, r4 denote the values of the roots of the quartic x4 + 2x3 + 4x2 − 3x + 5. Find∏4
i=1(r

3
i − 8).

Solution. 4277
Denote the quartic by p(x). Note

4∏
i=1

(r3i − 8) =

4∏
i=1

(ri − 2)

4∏
i=1

(r2i + 2ri + 4) = (−1)4p(2)
∏4
i=1(3ri − 5)∏4

i=1 r
2
i

= p(2) · (−1)
434p(5/3)

25

Computing we have p(2) = 47, p(5/3) = 2275
81 so our answer is 47 · 81 · 227581 ·

1
25 = 4277.

Problem 3. Wendy the tadpole is swimming around the Dawn Pond. She starts at the point (0, 0) and
wants to swim to the point (2

√
3, 0). However, Wendy can only make four jumps of length 1. Let P be the

point Wendy reaches after the second jump. Let R be the locus of all such points P over all possible paths
Wendy can take. Find the area of region R.

Solution. 4π
3 − 2

√
3

After 2 jumps Wendy must be within distance 2 of (0, 0). Also her ending point is reachable in 2
jumps so P is also within distance 2 of (2

√
3, 0) Therefore R is the intersection of circles of radius 2,

at a distance 2
√
3 apart. This area is 2 circular arcs of radius 2 and angle π

3 minus the the rhombus
with sides 2 and long diagonal 2

√
3. The rhombus will have the other diagonal of 2. Thus we have

2π(2)2/6− 1
2 (2)(2

√
3) = 4π

3 − 2
√
3.

Problem 4. How many integers 0 ≤ x ≤ 2019 satisfy 2019|(x5 + x3 + x)?

Solution. 16
x = 0, 2019 are both solutions, now suppose x 6≡ 0 (mod 2019), so x4+x2+1 = (x2+x+1)(x2−x+1) ≡ 0
(mod 2019). 2019 = 3 · 673 and 673 is prime.

First, suppose 673 does not divide x. If x ≡ 1, 2 (mod 3), then (x2 + x+ 1)(x2 − x+ 1) ≡ 0 (mod 3). If
x ≡ 0 (mod 3), then 3|x. So x can be any residue (mod 3).

Now either we have x2 + x + 1 ≡ 0 (mod 673) or x2 − x + 1 ≡ 0 (mod 673); if both quantities are 0
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(mod 673) then their difference 2x ≡ 0 (mod 673) =⇒ x ≡ 0 (mod 673) which leads to none of those
quantities being 0 (mod 673).

If x2±x+1 ≡ 0 (mod 2019), then (2x±1)2 ≡ −3 (mod 673). We can compute by Quadratic Reciprocity(
−3
673

)
=

(
−1
673

)(
3

673

)
= 1 · (−1)

3−1
2

673−1
2(

673
3

) = 1

We can check that some residue a modulo 2019 cannot be a solution to both x2 + x+ 1 ≡ 0 (mod 673)
and x2 − x+ 1 ≡ 0 (mod 673) simultaneously, hence there are 4 distinct residues (mod 673) so that
(x2 + x+ 1)(x2 − x+ 1) ≡ 0 (mod 673).

Next, suppose 673 does divide x. Then x ≡ 1, 2 (mod 3) as (x2 + x+ 1)(x2 − x+ 1) ≡ 0 (mod 3). This
yields 2 residues (mod 3).

This leads to 4 · 3 + 1 · 2 = 12+ 2 nonzero solutions (mod 2019) by the Chinese Remainder Theorem, so
the total answer is 14 + 2 = 14.

Problem 5. Let A(0, 0) and B(1, 0) be points in the plane. Let R be the region in the plane such that for
any point C in R, m∠ACB > 30◦. Compute the area of R.

Solution. 5
3π +

√
3
2

R is the union of two circles of radius 1 centered at ( 12 ,
√
3
2 ) and ( 12 ,−

√
3
2 ). These circles are the locus of

points for which m∠ACB = 30◦. A simple construction shows that for any C inside the interior of one
of these circles, m∠ACB > 30◦, and the contrary for any C outside these circles.

We can split R along the x-axis into two identical regions consisting of a 300◦ arc of a circle of radius 1
and an equilateral triangle of side length 1. Thus, the area is

2

(
5

6
π(12) +

√
3

4
(12)

)
=

5

3
π +

√
3

2

15


