Tiebreaker Solutions

2018

1. A large pond contains infinitely many lily pads labelled $1,2,3, \ldots$, placed in a line, where for each k, lily pad $k+1$ is one unit to the right of lily pad k. A frog starts at lily pad 100 . Each minute, if the frog is at lily pad n, it hops to lily pad $n+1$ with probability $\frac{n-1}{n}$, and hops all the way back to lily pad 1 with probability $\frac{1}{n}$. Let N be the position of the frog after 1000 minutes. What is the expected value of N ?
Solution: Let X_{k} be the position of the frog after k minutes have passed. For any n, the expected value of X_{k+1}, given that $X_{k}=n$, is $\frac{n-1}{n}(n+1)+\frac{1}{n}(1)=n$. It follows that the expected value of X_{k+1} is equal to the expected value of X_{k}, meaning this value does not change from minute to minute. Since the expected value of X_{0} is 100 , the expected value of $N=X_{1000}$ is 100 as well.
2. A cat is tied to one corner of the base of a tower. The base forms an equilateral triangle of side length 4 m , and the cat is tied with a leash of length 8 m . Let A be the area of the region accessible to the cat. If we write $A=\frac{m}{n} \pi-k \sqrt{\ell}$, where m, n, k, ℓ are positive integers such that m and n are relatively prime, and ℓ is squarefree, what is the value of $m+n+k+\ell$?
Note: the original wording mistakenly had $A=\frac{m}{n} \pi+k \sqrt{\ell}$.
Solution: Say the tower's base is triangle $B C D$, with the cat tied at point B. The cat can only move within the circle of radius 8 m around point B, and outside the sector of this circle spanned by angle $\angle C B D$ the cat can move anywhere in the circle. However, in this sector, the cat's motion is constrained further: it can only move within 4 m of either C or D, i.e. it must be contained within one of the two circles centered at C and D with radius 4 m . If the cat somehow moved outside these circles within the sector, then tightening the leash would yield a path consisting of two segments, one from B to either C or D, and the second from the latter point to the cat. The first segment would have length 4 m , while the second would have length exceeding 4 m , for a total length exceeding 8 m , which is impossible. Constructing this figure formed by three circles, we see the area is $\frac{5}{6}(64 \pi)+2\left(\frac{1}{3}\right)(16 \pi)-2\left(\frac{1}{6}(16 \pi)-\frac{1}{2}(2)(2 \sqrt{3})\right)=\frac{176}{3} \pi-4 \sqrt{3}$. This gives $m+n+k+\ell=186$.
3. Compute

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n^{2}+3 n}-\frac{1}{n^{2}+3 n+2}\right)
$$

Solution: We have $\frac{1}{n^{2}+3 n}=\frac{1}{3}\left(\frac{1}{n}-\frac{1}{n+3}\right)$ and $\frac{1}{n^{2}+3 n+2}=\frac{1}{n+1}-\frac{1}{n+2}$, so the sum telescopes to $\frac{1}{3}\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}\right)-\frac{1}{2}=1 / 9$.
4. Find the sum of the real roots of $f(x)=x^{4}+9 x^{3}+18 x^{2}+18 x+4$.

Solution: Note $f(x)$ factors as $\left(x^{2}+7 x+2\right)\left(x^{2}+2 x+2\right)$, and only $x^{2}+7 x+2$ has real roots, which sum to -7 .
5. Let a, b, c, d, e be the roots of $p(x)=2 x^{5}-3 x^{3}+2 x-7$. Find the value of

$$
\left(a^{3}-1\right)\left(b^{3}-1\right)\left(c^{3}-1\right)\left(d^{3}-1\right)\left(e^{3}-1\right)
$$

Solution: We have

$$
\prod\left(a^{3}-1\right)=\prod(a-1)(a-\omega)\left(a-\omega^{2}\right)=-\frac{1}{8} p(1) p(\omega) p\left(\omega^{2}\right)
$$

where $\omega=e^{2 \pi i / 3}$. Evaluating these, using the facts that $\omega^{2}+\omega+1=0$, and $\omega^{3}=1$, we have $p(1)=-6, p(\omega)=2 \omega^{2}-3+2 \omega-7=-12, p\left(\omega^{2}\right)=2 \omega-3+2 \omega^{2}-7=-12$, so the desired product is $-\frac{1}{8}(-6)(-12)(-12)=108$.

