1. A robot is at position 0 on a number line. Each second, it randomly moves either one unit in the positive direction or one unit in the negative direction, with probability $\frac{1}{2}$ of doing each. Find the probability that after 4 seconds, the robot has returned to position 0 .
2. How many positive integers $n \leq 20$ are such that the greatest common divisor of n and 20 is a prime number?
3. A sequence of points $A_{1}, A_{2}, A_{3}, \ldots A_{7}$ is shown in the diagram below, with $A_{1} A_{2}$ parallel to $A_{6} A_{7}$. We have $\angle A_{2} A_{3} A_{4}=113^{\circ}, \angle A_{3} A_{4} A_{5}=100^{\circ}$, and $\angle A_{4} A_{5} A_{6}=122^{\circ}$. Find the degree measure of $\angle A_{1} A_{2} A_{3}+\angle A_{5} A_{6} A_{7}$.

4. Compute

$$
\log _{3}\left(\frac{\log _{3} 3^{3^{3^{3}}}}{\log _{3^{3}} 3^{3^{3}}}\right)
$$

5. In an 8×8 chessboard, a pawn has been placed on the third column and fourth row, and all the other squares are empty. It is possible to place nine rooks on this board such that no two rooks attack each other. How many ways can this be done? (Recall that a rook can attack any square in its row or column provided all the squares in between are empty.)
6. Suppose that a, b are positive real numbers with $a>b$ and $a b=8$. Find the minimum value of $\frac{a^{2}+b^{2}}{a-b}$.
7. A cone of radius 4 and height 7 has A as its apex and B as the center of its base. A second cone of radius 3 and height 7 has B as its apex and A as the center of its base. What is the volume of the region contained in both cones?
8. Let $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ be a permutation of the numbers $1,2,3,4,5,6$. We say a_{i} is visible if a_{i} is greater than any number that comes before it; that is, $a_{j}<a_{i}$ for all $j<i$. For example, the permutation $2,4,1,3,6,5$ has three visible elements: $2,4,6$. How many such permutations have exactly two visible elements?
9. Let $f(x)=x+2 x^{2}+3 x^{3}+4 x^{4}+5 x^{5}+6 x^{6}$, and let $S=[f(6)]^{5}+[f(10)]^{3}+[f(15)]^{2}$. Compute the remainder when S is divided by 30 .
10. In triangle $A B C$, the angle bisector from A and the perpendicular bisector of $B C$ meet at point D, the angle bisector from B and the perpendicular bisector of $A C$ meet at point E, and the perpendicular bisectors of $B C$ and $A C$ meet at point F. Given that $\angle A D F=5^{\circ}$, $\angle B E F=10^{\circ}$, and $A C=3$, find the length of $D F$.

11. Let $F_{0}=0, F_{1}=1$, and $F_{n}=F_{n-1}+F_{n-2}$. How many subsets S of $\{1,2, \ldots 2011\}$ are there such that

$$
F_{2012}-1=\sum_{i \in S} F_{i} ?
$$

12. Let a_{k} be the number of perfect squares m such that $k^{3} \leq m<(k+1)^{3}$. For example, $a_{2}=3$ since three squares m satisfy $2^{3} \leq m<3^{3}$, namely 9,16 , and 25 . Compute

$$
\sum_{k=0}^{99}\lfloor\sqrt{k}\rfloor a_{k},
$$

where $\lfloor x\rfloor$ denotes the largest integer less than or equal to x.
13. Suppose that a, b, c, d, e, f are real numbers such that

$$
\begin{gathered}
a+b+c+d+e+f=0, \\
a+2 b+3 c+4 d+2 e+2 f=0, \\
a+3 b+6 c+9 d+4 e+6 f=0, \\
a+4 b+10 c+16 d+8 e+24 f=0, \\
a+5 b+15 c+25 d+16 e+120 f=42,
\end{gathered}
$$

Compute $a+6 b+21 c+36 d+32 e+720 f$.
14. In Cartesian space, three spheres centered at $(-2,5,4),(2,1,4)$, and $(4,7,5)$ are all tangent to the $x y$-plane. The $x y$-plane is one of two planes tangent to all three spheres; the second plane can be written as the equation $a x+b y+c z=d$ for some real numbers a, b, c, d. Find $\frac{c}{a}$.
15. Find the number of pairs of positive integers a, b, with $a \leq 125$ and $b \leq 100$, such that $a^{b}-1$ is divisible by 125 .

