
Individual Round Solutions

2018

1. Two robots race on the plane from (0, 0) to (a, b), where a and b are positive real
numbers with a < b. The robots move at the same constant speed. However, the first
robot can only travel in directions parallel to the lines x = 0 or y = 0, while the second
robot can only travel in directions parallel to the lines y = x or y = −x. Both robots
take the shortest possible path to (a, b) and arrive at the same time. Find the ratio a

b
.

Solution: Robot 1 will travel a distance a + b, while Robot 2 will travel a vertical
distance b (since b > a) and thus total distance b

√
2. It follows that a + b = b

√
2, so

a
b

=
√

2− 1 .

2. Suppose x+ 1
x

+ y + 1
y

= 12 and x2 + 1
x2

+ y2 + 1
y2

= 70. Compute x3 + 1
x3

+ y3 + 1
y3

.

Solution: Let a = x+ 1
x

and b = y + 1
y
. Then, a2− 2 = x2 + 1

x2
and b2− 2 = y2 + 1

y2
.

The equations give a+ b = 12 and a2 + b2− 4 = 70, which can be solved to give a = 5
and b = 7. Since (x + 1

x
)3 = x3 + 3x + 3

x
+ 1

x3
, we have x3 + 1

x3
= a3 − 3a = 110.

Similarly, y3 + 1
y3

= b3 − 3b = 322, so the desired answer is 432 .

3. Find the largest non-negative integer a such that 2a divides

322018 + 3.

Solution: By Fermat’s Little Theorem and the fact that φ(22019) = 22018, we have

322018 ≡ 1 (mod 22019).

Hence the given number is congruent to 4 (mod 22019), so 4 = 22 is the largest power
of 2 dividing it, and the largest value of a is 2 .

4. Suppose z and w are complex numbers, and |z| = |w| = zw̄+ z̄w = 1. Find the largest
possible value of Re(z + w), the real part of z + w.

Solution: Calculating |z+w|2, we get |z|2 + |w|2 +zw̄+wz̄ = 3. Since |z+w| =
√

3 ,
that is the maximum possible value of Re(z+w). (Alternatively, we can consider this
problem geometrically and note that zw̄ + z̄w = 2 cos θ, where θ is the angle between
z and w in the complex plane.)

5. Two people, A and B, are playing a game with three piles of matches. In this game,
a move consists of a player taking a positive number of matches from one of the three
piles such that the number remaining in the pile is equal to the nonnegative difference
of the numbers of matches in the other two piles. A and B each take turns making
moves, with A making the first move. The last player able to make a move wins.
Suppose that the three piles have 10, x, and 30 matches. Find the largest value of x
for which A does not have a winning strategy.

1



Solution: Note that for three piles of a, b, and c matches, with a ≤ b ≤ c and
a+ b ≤ c, the first move is predetermined; you must replace the pile of c matches with
b−a matches. In fact, since the new piles b−a, a, b also satisfy this condition (perhaps
in a different order), the next move is determined as well, and a brief induction shows
that all following moves are predetermined if this initial condition is satisfied.

Note also that this situation can be effectively modeled by the Euclidean algorithm: if
one always ignores the largest pile at any given time and focuses only on the smaller
piles (which start with a and b matches), the number of matches left in the smaller
two piles resembles another step in the Euclidean algorithm (there will be a and b− a
matches remaining, then a and b − 2a, and so on until b − ka < a). A player wins
when the algorithm finishes, i.e., when he or she removes all of the matches from one
of the piles. This simplifies the computations, since you only need to keep track of
two piles instead of three.

Thus for x ≤ 20, the game is completely predetermined, and it is easy to check that
A loses when x = 20. For x ≥ 21, A has a winning strategy: they can simply replace
the pile of x matches with 20 matches. Thus the largest value of x for which A does
not have a winning strategy is 20 .

6. Let A1A2A3A4A5A6 be a regular hexagon with side length 1. For n = 1, . . . , 6, let Bn

be a point on the segment AnAn+1 chosen at random (where indices are taken mod 6,
so A7 = A1). Find the expected area of the hexagon B1B2B3B4B5B6.

Solution: For each n, the area of the triangle Bn−1AnBn is
√
3
4

(Bn−1An)(AnBn),
so since these two lengths are independent and each has expected value 1/2, the

expected area of Bn−1AnBn is
√
3

16
. Then since B1B2B3B4B5B6 is A1A2A3A4A5A6

with these six triangles removed, it follows that the expected area of B1B2B3B4B5B6

is 3
√
3

2
− 6(

√
3

16
) = 9

√
3/8 .

7. A termite sits at the point (0, 0, 0), at the center of the octahedron |x|+ |y|+ |z| ≤ 5.
The termite can only move a unit distance in either direction parallel to one of the
x, y, or z axes: each step it takes moves it to an adjacent lattice point. How many
distinct paths, consisting of 5 steps, can the termite use to reach the surface of the
octahedron?

Solution: The octahedron has 8 faces which the termite can reach. For each face,
every path to that face consists of 5 independent choices from a set of three possible
moves: {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}. So there are 35 ways to reach each face.
However, we’ve double-counted every path which ends at an edge of the octahedron:
there are 12 edges and 25 ways to reach each one. But in removing these, we’ve
discounted every path which ends at a vertex of the octahedron, of which there are 6.
Thus, our final result is

8 · 35 − 12 · 25 + 6 · 15 = 1566

by Inclusion-Exclusion.

8. Let

P (x) = x4037 − 3− 8 ·
2018∑
n=1

3n−1xn.

Find the number of roots z of P (x) with |z| > 1, counting multiplicity.
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Solution: Notice that P (x) = (x− 3)Q(x), where

Q(x) = x4036 + 3x4035 + · · ·+ 32018x2018 + · · ·+ 3x+ 1.

Since Q is palindromic, Q(x) = 0 if and only if Q(1/x) = 0, and Q has no roots with
absolute value 1, because for |x| = 1 the triangle inequality gives

|Q(x)− 32018x2018| ≤ 2
2017∑
k=0

3k = 32018 − 1 < 32018 = |32018x2018|

meaning Q(x) 6= 0. It follows that P has exactly 1 + 4036/2 = 2019 roots with
absolute value greater than 1.

9. How many times does 01101 appear as a not necessarily contiguous substring of
0101010101010101? (Stated another way, how many ways can we choose digits from
the second string, such that when read in order, these digits read 01101?)

Solution: Equivalently, the problem is to count the number of 5-tuples (a1, a2, a3, a4, a5)
with 1 ≤ a1 < a2 < a3 < a4 < a5 ≤ 16 such that a1, a4 are odd and a2, a3, a5
are even. Now, look instead at the consecutive differences. For such a 5-tuple,
a2 − a1, a4 − a3, a5 − a4 are odd, while a3 − a2 is even, so we can write a1 = 2b1 + 1,
a2 = a1 + 2b2 + 1, a3 = a2 + 2b3 + 2, a4 = a3 + 2b4 + 1, a5 = a4 + 2b5 + 1, and
16 = a5 + 2b6, for some integers b1, b2, b3, b4, b5, b6 ≥ 0, which then must satisfy
16 = 2(b1 + b2 + b3 + b4 + b5 + b6) + 6, hence b1 + · · · + b6 = 5. Conversely, for
any b1, b2, b3, b4, b5, b6 ≥ 0 with b1 + · · · + b6 = 5, we can construct a corresponding
5-tuple (a1, a2, a3, a4, a5) satisfying the required properties, so our problem is exactly
to count the number of such (b1, b2, b3, b4, b5, b6). Stars and bars gives the answer(
6+5−1

5

)
= 252 .

10. A perfect number is a positive integer that is equal to the sum of its proper positive
divisors, that is, the sum of its positive divisors excluding the number itself. For
example, 28 is a perfect number because 1 + 2 + 4 + 7 + 14 = 28. Let ni denote the
ith smallest perfect number. Define

f(x) =
∑
i|nx

∑
j|ni

1

j

(where
∑

i|nx
means we sum over all positive integers i that are divisors of nx). Com-

pute f(2), given there are at least 50 perfect numbers.

Solution: For each ni, we claim that
∑

j|ni
1/j = 2. From this, it will follow that

since n2 = 28 and there are 6 divisors of 28, the sum is 2 · 6 = 12 . We can see that∑
j|ni

1/j = 2 by taking pairs of divisors whose product is ni. Since 1
j1

+ 1
j2

= j1+j2
j1j2

=

j1+j2
ni

, our sum becomes
(∑

j|ni
j
)
/ni. Since

∑
j|ni

j = 2ni, we have
∑

j|ni
1/j = 2 as

desired.

11. Let O be a circle with chord AB. The perpendicular bisector to AB is drawn, inter-
secting O at points C and D, and intersecting AB at the midpoint E. Finally, a circle
O′ with diameter ED is drawn, and intersects the chord AD at the point F . Given
EC = 12, and EF = 7, compute the radius of O.
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Solution: Let θ = ∠CDA and let R be the radius of O. Note that ∠CAD, ∠AED,
and ∠EFD are right angles, and ∠ADE = ∠EDF = θ, so AD

CD
= ED

AD
= cos θ,

while EF
ED

= sin θ. Then since CD = 2R, we have ED = 2R cos2 θ, hence EF =
2R cos2 θ sin θ and EC = CD − ED = 2R sin2 θ. This gives

2R · EF 2 = EC · (2R− EC)2,

i.e. 98R = 48(R− 6)2, which we can rewrite as

0 = 24(R− 6)2 − 49R = (8R− 27)(3R− 32),

so the only possible values of R are 27
8

and 32
3

. Since we must have 2R = CD > EC =

12, R cannot be 27
8

, so we must have R = 32/3 .

12. Suppose r, s, t are the roots of the polynomial x3 − 2x+ 3. Find

1

r3 − 2
+

1

s3 − 2
+

1

t3 − 2

Solution: Observe that

1

r3 − 2
+

1

s3 − 2
+

1

t3 − 2
=

1

2r − 5
+

1

2s− 5
+

1

2t− 5

since r3 − 2 = 2r − 5 if and only if r3 − 2r + 3 = 0. Therefore our answer is

4(rs+ st+ tr)− 20(r + s+ t) + 75

8rst− 20(rs+ st+ tr) + 50(r + s+ t)− 125

which equals −8+75
−24+20·2−125 = −67/109 by Vieta.

13. Let a1, a2, . . . , a14 be points chosen independently at random from the interval [0, 1].
For k = 1, 2, . . . , 7, let Ik be the closed interval lying between a2k−1 and a2k (from the
smaller to the larger). What is the probability that the intersection of I1, I2, . . . , I7 is
nonempty?

Solution: With probability 1, all ai are distinct, and the order of the ai is uniform
over all 14! permutations of {1, 2, . . . , 14}, meaning that for each permutation σ, the
probability that aσ(1) < aσ(2) < · · · < aσ(14) is 1

14!
. Now, I1, I2, . . . , I7 intersect exactly

when there is some c ∈ [0, 1] such that for k = 1, . . . , 7, either a2k−1 < c < a2k or
a2k < c < a2k−1. Such a c exists iff for each k exactly one of a2k−1, a2k is among the
first 7 of the ai, that is, for each k exactly one of 2k − 1, 2k is in S where S is the
set of indices of the smallest 7 ai. But S is uniformly distributed over all

(
14
7

)
subsets

of {1, 2, . . . , 14} of size 7, while there are 27 choices of S containing exactly one of
2k− 1, 2k for k = 1, . . . , 7 (given by choosing, for each k, either 2k− 1 or 2k to belong

to S). Thus the desired probability is 27

(14
7 )

= 16/429 .

14. Consider all triangles 4ABC with area 144
√

3 such that

sinA sinB sinC

sinA+ sinB + sinC
=

1

4

Over all such triangles ABC, what is the smallest possible perimeter?
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Solution: Let R be the circumradius, and r the inradius. By the Law of Sines, we
have that

sinA sinB sinC

sinA+ sinB + sinC
=

1

4
=⇒ 8R3 sinA sinB sinC

2R(sinA+ sinB + sinC)
=

abc

a+ b+ c
= R2

However, [ABC] = abc
4R

= r(a+b+c)
2

=⇒ abc
a+b+c

= 2rR = R2 =⇒ R = 2r. By Euler’s
inequality, ABC is equilateral, and has unique side length. Call the side length s.
Then since s2

√
3

4
= 144

√
3, we have s =

√
576 = 24, which gives a perimeter of 72 .

15. Let N be the number of sequences (x1, x2, . . . , x2018) of elements of {1, 2, . . . , 2019},
not necessarily distinct, such that x1 + x2 + · · · + x2018 is divisible by 2018. Find the
last three digits of N .

Solution: For convenience, let Sn = {1, 2, . . . , n + 1}. Let f0(n) be the number of
ways to select n elements from Sn so that the sum of the elements is divisible by n.
Furthermore, in general define fi(n) to be the number of ways to select n− i elements
from sn so that the sum of the elements is −i (mod n), for all 0 ≤ i ≤ n − 1. Then
we have the recurrence

f0(n) = 1 · ((n+ 1)n−1 − f1(n)) + 2 · f1(n) = (n+ 1)n−1 + f1(n)

because if we consider choosing the first n− 1 elements of the sequence, if the sum of
the n − 1 elements we choose is not −1 (mod n), we have exactly one choice for our
nth element to make the sum 0 (mod n), and if the sum is −1 (mod n), we have two
ways, namely 1 and n+ 1.

Similarly, we have the recursion for general i,

fi(n) = (n+ 1)n−i−1 + fi+1(n)

Summing over all i, we use

f0(n) = (n+ 1)n−1 + f1(n)

f1(n) = (n+ 1)n−2 + f2(n)

· · ·
fn−2(n) = (n+ 1)1 + fn−1(n)

and the fact that fn−1(n) = 2, since we can choose 1 or n+ 1, to get that

f0(n) = 2 + (n+ 1) · (n+ 1)n−1 − 1

n

Hence, we just wish to find f0(2018) = 2 + 2019 · 20192017−1
2018

mod 1000. To find this
mod 8, since 20192 ≡ 32 ≡ 1 (mod 8) we see that

2 + 2019 · (20192016 + 20192015 + · · ·+ 2019 + 1) ≡ 2 + 3 · (1) ≡ 5 (mod 8)

To find this modulo 125: after a little work, we have that the inverse of 2018 mod 125
is 7 and that 1917 ≡ 64 mod 125, hence by Euler’s theorem,

2+2019 · 20192017 − 1

2018
≡ 2+19 ·7 · (1917−1) ≡ 8 ·1917−6 ≡ 8 ·64−6 ≡ 6 (mod 125)

Thus the answer is 381 .
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