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1. Anita plays the following single-player game: She is given a circle in the plane. The
center of this circle and some point on the circle are designated “known points”. Now
she makes a series of moves, each of which takes one of the following forms:

(i) She draws a line (infinite in both directions) between two “known points”; or

(ii) She draws a circle whose center is a “known point” and which intersects another
“known point”.

Once she makes a move, all intersections between her new line/circle and existing
lines/circles become “known points”, unless the new/line circle is identical to an exist-
ing one. In other words, Anita is making a ruler-and-compass construction, starting
from a circle.

What is the smallest number of moves that Anita can use to construct a drawing
containing an equilateral triangle inscribed in the original circle?

Solution: 5 . Call the starting circle C, let P be the center of C, and let Q be the
original known point on C. Anita can win in 5 moves as follows: draw the circle whose
center is Q and which contains P , and let R, S denote the two intersections of the two
circles; draw the line from P to Q, and let T denote the non-Q intersection of that

line with C; and (in 3 moves) draw the lines
←→
RS,
←→
ST , and

←→
TR. The resulting drawing

contains the equilateral triangle 4RST inscribed in C.

To see that Anita cannot win in less than 5 moves, note that the first move must either

be to draw the line
←→
PQ or to draw the circle with center Q containing P . After either

of these moves, the resulting drawing does not contain 3 known points which form the
vertices of an equilateral triangle inscribed in C. Thus she needs at least 1 more move
to make all of the vertices. In addition, she needs at least additional 3 moves to draw
the triangle, noting that no move which makes additional vertices can also draw one
edge of the triangle, and no move which draws the triangle can create the additional
vertices. Then in total, she needs at least 1 + 1 + 3 = 5 moves.

2. Compute the sum
∑200

n=1
1

n(n+1)(n+2)
.

Solution: Decomposing via partial fractions, we have 1
n(n+1)(n+2)

= 1
2
( 1
n
− 2

n+1
+ 1

n+2
),

so the sum telescopes, giving
∑200

n=1
1

n(n+1)(n+2)
= 1

2
(1− 1

2
− 1

201
+ 1

202
) =

5075

20301
.

3. Let p be the third-smallest prime number greater than 5 such that:

• 2p + 1 is prime, and

• 5p 6≡ 1 (mod 2p + 1).
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Find p.

Solution: Note that whenever 2p + 1 is prime, 52p ≡ 1 (mod 2p + 1) by Fermat’s
little theorem. Hence we just need to figure out when 5p 6≡ 1 (mod 2p+1). By Euler’s

criterion, 5p ≡
(

5
2p+1

)
, and by quadratic reciprocity,

(
5

2p+1

)
=
(
2p+1
5

)
. Since p and

2p + 1 are prime and not 5, we see that the only possibilities are p ≡ 1, 3, 4 (mod 5),
leading to 2p + 1 ≡ 2, 3, 4 (mod 5), respectively. Out of 2, 3, 4, only 2 and 3 are not
squares modulo 5, so 5p 6≡ 1 (mod 2p + 1) iff p ≡ 1 or 3 (mod 5).

Now we enumerate all p > 5 such that 2p + 1 is prime and p ≡ 1, 3 (mod 5): 11, 23,
41 .

4. If Percy rolls a fair six-sided die until he rolls a 5, what is his expected number of rolls,
given that all of his rolls are prime?

Solution: For a given k ≥ 1, the probability pk that there are exactly k rolls and
all rolls are prime is 1

6
(1
3
)k−1 (this happens if rolls 1, . . . , k − 1 are in {2, 3}, and the

last is 5). Then the probability p that all rolls are prime is the sum p =
∑∞

k=1 pk =
1
6

∑∞
k=1(

1
3
)k−1 = 1

4
, so the expected number of rolls, given that all rolls are prime is

1
p

∑∞
k=1 kpk = 2

3

∑∞
k=1 k(1

3
)k−1 = 3/2 .

5. Let 4ABC be a right triangle such that AB = 3, BC = 4, AC = 5. Let point D be
on AC such that the incircles of 4ABD and 4BCD are mutually tangent. Find the
length of BD.

Solution: We can divide each of the edges BA,BC,AD,CD,BD in two at the points
of tangency of the two incircles; since the two incircles are tangent at the same point on
BD, the two divisions of BD agree, so we can write BA = b+a, BC = b+c, AD = a+d,
CD = c+d, and BD = b+d, for some a, b, c, d. Drop the altitude from B to AC, and
let the point at the base be E. Writing x = ED, we have AD = AE + ED = 9

5
+ x,

CD = CE − ED = 16
5
− x, and BD =

√
BE2 + ED2 =

√
(12
5

)2 + x2. To find x, we

can express 2b in two ways as 2b = BC + BD − CD = BA + BD − AD. This gives
BC − CD = BA− AD, hence 4− (16

5
− x) = 3− (9

5
+ x), and it follows that x = 1

5
,

giving BD =
√

(12
5

)2 + (1
5
)2 =

√
145/5 .

6. Karina has a polynomial p1(x) = x2 + x + k, where k is an integer. Noticing that p1
has integer roots, she forms a new polynomial p2(x) = x2 + a1x + b1, where a1 and
b1 are the roots of p1 and a1 ≥ b1. The polynomial p2 also has integer roots, so she
forms a new polynomial p3(x) = x2 + a2x+ b2, where a2 and b2 are the roots of p2 and
a2 ≥ b2. She continues this process until she reaches p7(x) and finds that it does not
have integer roots. What is the largest possible value of k?

Solution: p1 will have integer roots only if −k = n(n − 1), in which case p2(x) =
x2 + (n − 1)x − n and p3(x) = x2 + x − n. Similarly, p5(x) = x2 + x − n2 where
n = n2(n2 − 1) and p7(x) = x2 + x − n3 where n2 = n3(n3 − 1). Now the smallest
possible value for n3 is 3 (if it were 0 or 1 then we wouldn’t actually reach p7 and if it
were 2 we could go on forever), so n2 = 6, n = 30, and −k = 870, hence the largest
value of k is −870 .

7. For a positive number n, let g(n) be the product of all 1 ≤ k ≤ n such that gcd(k, n) =
1, and say that n > 1 is reckless if n is odd and g(n) ≡ −1 (mod n). Find the number
of reckless numbers less than 50.
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Solution: We will prove that the reckless numbers are exactly the odd prime powers,
from which it follows that the answer is 18 , since there are 18 odd prime powers less
than 50.

First note that every k in the product g(n) has a unique inverse k′ mod n, which is
also in the product. We can group all elements of the product into pairs of inverses,
except those which are their own inverses, i.e. those which have k2 ≡ 1 (mod n). The
product of each such pair cancels to 1 mod n, so it follows that g(n) ≡

∏
k2≡1 k (mod

n).

Now, with induction on m, we can prove for an odd prime power pm that the only
solutions to k2 ≡ 1 (mod pm) are k ≡ ±1 (mod pm). First, in the case m = 1, we have
k2 − 1 = (k − 1)(k + 1), so since p is prime the only solutions to (k − 1)(k + 1) ≡ 0
(mod p) are k ≡ ±1 (mod p). Assuming the statement holds for some m ≥ 1, consider
the equation k2 ≡ 1 (mod pm+1). Any solution k must have k ≡ ±1 (mod pm) by the
inductive hypothesis, so k ≡ apm±1 (mod pm+1) for some a, giving 1 ≡ k2 ≡ 1±2apm

(mod pm+1). This can only hold if a ≡ 0 (mod p), meaning k ≡ ±1 (mod pm+1), as
desired.

From this it follows that g(pm) ≡ (1)(−1) ≡ −1 (mod pm) for any odd prime power
pm, so all such pm are reckless. Now, consider an odd composite n, so n = pm1

1 · · · pmr
r

with r > 1. Any k with k2 ≡ 1 (mod n) has k2 ≡ 1 (mod pmi
i ) for each i, hence k ≡ ki

(mod pmi
i ) for some ki ∈ {−1, 1}. Conversely, for any choice of k1, . . . , kr ∈ {−1, 1},

by the Chinese Remainder Theorem there is a unique 1 ≤ k ≤ n with k ≡ ki (mod
pmi
i ) for each i, and this k necessarily has k2 ≡ 1 (mod pmi

i ) for each i, so again by
the CRT we have k2 ≡ 1 (mod n). The values of k with k2 ≡ 1 (mod n) are thus in
direct correspondence with choices of k1, . . . , kr ∈ {−1, 1}, so in particular, there are
2r such k, and for each i, 2r−1 of these k have k ≡ 1 (mod pmi

i ) and 2r−1 have k ≡ −1
(mod pmi

i ). Thus g(n) ≡ (1)2
r−1

(−1)2
r−1 ≡ 1 (mod pmi

i ) for each i, so g(n) ≡ 1 (mod
n), meaning n is not reckless.

8. Find the largest positive integer n that cannot be written as n = 20a + 28b + 35c for
nonnegative integers a, b, and c.

Solution: Generalizing the problem: for given relatively prime p, q, r, we want to
find the largest positive integer n that cannot be written as n = apq + bpr + cqr for
a, b, c ≥ 0. Let S be the set of numbers n which can be written as n = apq + bpr
for a, b ≥ 0. Note all such numbers are multiples of p. By the “Chicken McNugget
Theorem”, the largest number which cannot be written in the form aq+ br for a, b ≥ 0
is qr− q− r, so the largest multiple of p which cannot be written in the form apq+ bpr
is p(qr − q − r), and all larger multiples of p can be written in this form. Thus
p(qr − q − r) 6∈ S, while pk ∈ S for all k > p(qr − q − r).

The rest of the proof is similar to that of the Chicken McNugget Theorem. Let T be
the set of numbers n which can be expressed as n = apq + bpr + cqr for a, b, c ≥ 0.
Any element of T can necessarily be written this way with c < p, since otherwise we
can write c = pd + c′ for d ≥ 0 and 0 ≤ c′ < p, hence n = apq + bpr + (pd + c′)qr =
(a+rd)pq+bpr+c′qr. Thus T is the set of numbers which can be written as n = s+cqr
for s ∈ S and 0 ≤ c < p. Any such expression is in fact unique; this can be seen by
noting that c ≡ q−1r−1n (mod p).

Thus for a given 0 ≤ ` < p, for n ≡ ` (mod p) we have n ∈ T ⇐⇒ n − cqr ∈ S,
where c is such that 0 ≤ c < p and c ≡ q−1r−1` (mod p). This means that the largest
n with n ≡ ` and n 6∈ T is p(qr− q− r) + cqr, for the same value of c as above. Since
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c ranges over 0, 1, . . . , p− 1 as ` ranges over 0, 1, . . . , p− 1, it follows that the largest
value of n not in T is n = p(qr− q− r) + (p− 1)qr = 2pqr− pq− pr− qr. In our case,
p = 4, q = 5, r = 7, so this value is 197 .

9. Say that a function f : {1, 2, . . . , 1001} → Z is almost polynomial if there is a polyno-
mial p(x) = a200x

200 + · · ·+ a1x + a0 such that each an is an integer with |an| ≤ 201,
and such that |f(x) − p(x)| ≤ 1 for all x ∈ {1, 2, . . . , 1001}. Let N be the number of
almost polynomial functions. Compute the remainder upon dividing N by 199.

Solution: Let P be the set of all polynomials of the desired form, that is, all polynomi-
als p(x) = a200x

200+· · ·+a1x+a0 such that each an is an integer with |an| ≤ 201. Also,
let A be the set of pairs (f, p) of a function f and a polynomial p which satisfy the given
condition (meaning in particular p ∈ P ), so a function f is almost polynomial iff there
is a polynomial p such that (f, p) ∈ A. Suppose that f is almost polynomial and there
are two polynomials p1, p2 which satisfy the condition for f , i.e. (f, p1), (f, p2) ∈ A.
Then for all x ∈ {1, 2, . . . , 1001}, since |f(x) − p1(x)| ≤ 1 and |f(x) − p2(x)| ≤ 1, we
must have |p1(x)− p2(x)| ≤ 2, so p1(x)− p2(x) ∈ {−2,−1, 0, 1, 2}. By the pigeonhole
principle, there is some c ∈ {−2,−1, 0, 1, 2} such that p1(x) − p2(x) = c for at least
201 distinct values of x, but since p1(x)− p2(x)− c is a polynomial of degree at most
200, this is impossible unless p1(x)− p2(x)− c = 0. Thus any two polynomials which
satisfy the condition for the same function differ by a constant (between −2 and 2).

For a given almost polynomial f , let p0 be the polynomial, among all those with
(f, p) ∈ A, with the smallest constant term. Then by the above, the only other
possible choices of p with (f, p) ∈ A are p(x) = p0(x) + 1 and p(x) = p0(x) + 2. Note
that if (f, p0 + 2) ∈ A, then since |f(x)− p0(x)| ≤ 1 and |f(x)− (p0(x) + 2)| ≤ 1, we
must have f(x) = p0(x) + 1 for all x, so in particular, (f, p0 + 1) ∈ A as well. Thus
the three possible cases for the set of polynomials p with (f, p) ∈ A are (i) p0, (ii)
p0, p0 + 1, and (iii) p0, p0 + 1, p0 + 2. Now, consider the sum

S =
∑
p∈P

|{f : (f, p) ∈ A}| −
∑
p∈P

|{f : (f, p), (f, p + 1) ∈ A}|.

For a function f in case (i), f is counted once in the first sum, and not at all in the
second sum. If f falls into case (ii), f is counted twice in the first sum (at p = p0, p0+1)
and once in the second sum (at p = p0). If f falls into case (iii), it is counted three
times in the first sum (at p = p0, p0 + 1, p0 + 2) and twice in the second sum (at
p = p0, p0 + 1). Thus each almost polynomial function f is counted exactly once in S,
so S = N .

Now to find N , we have to evaluate these two sums. The first is straightforward: for
a given p ∈ P , the number of f with (f, p) ∈ A is 31001, since a choice of f simply
corresponds to a choice of f(x) ∈ {p(x)−1, p(x), p(x)+1} for each x ∈ {1, 2, . . . , 1001},
so the first sum comes out to 31001|P | = 31001 ·403201. The second sum is slightly more
complicated. For p ∈ P , if p+1 6∈ P , then there can be no f with (f, p), (f, p+1) ∈ A,
so the summand corresponding to p is zero. Now if p ∈ P is such that p + 1 ∈ P
as well, then there are exactly 21001 choices of f with (f, p), (f, p + 1) ∈ A, since we
must have f(x) ∈ {p(x), p(x) + 1} for all x. But the p ∈ P such that p + 1 ∈ P as
well are exactly those with constant term not equal to 201, so the number of such p is
403200 · 402, and thus the second sum comes out to 21001 · 403200 · 402.

Thus, evaluating N mod 199, using the fact that 199 is prime, together with Fermat’s
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little theorem, we have

N = 31001 · 403201 − 21001 · 403200 · 402

≡ 31001 · 5201 − 21001 · 5200 · 4
≡ 311 · 53 − 211 · 52 · 4
≡ 3 · 2432 · 53 − 210

≡ 3 · 442 · 53 − 29

≡ 3 · 112 · 10− 29

≡ 19 (mod 199)

10. Let ABC be a triangle such that AB = 13, BC = 14, AC = 15. Let M be the
midpoint of BC and define P 6= B to be a point on the circumcircle of ABC such
that BP ⊥ PM . Furthermore, let H be the orthocenter of ABM and define Q to be
the intersection of BP and AC. If R is a point on HQ such that RB ⊥ BC, find the
length of RB.

Solution: Interestingly, the answer does not depend on the point M . In fact, we will
show that R satisfies CR ⊥ AB. Knowing this greatly simplifies things as you no
longer need to know how R is constructed through P,H, and Q. In essence, R is an
easily constructible point embellished by lots of “fluff.”

Now to prove CR ⊥ AB, let J be the intersection of HM with AB, L the intersection
of HM and AC, and K the intersection of AH and BP .

A C

B

M
H

P

Q

J

L

R

K

Because H is the orthocenter of ABM , MJ ⊥ AB, which implies B, J,M, P are
concyclic. This means

∠BAH = 90− ∠B = ∠JMB = ∠JPB,

and so
∠JAK = ∠BAH = ∠JPB = 180− ∠JPK,

which implies A, J, P,K are concyclic. Observe that

∠AKJ = ∠APJ = ∠APB − ∠JPB = ∠C − (90− ∠B) = 90− ∠A = ∠ALJ.

This proves that A, J,K,L are concyclic.
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Thus, ∠JLK = ∠JAK = 90 − ∠B = ∠JMB, which proves BM ‖KL, that is,
BC ‖KL. Now because RB ‖HK, we conclude that triangles RBC and HKL are
homothetic with respect to Q, and thus CR ‖ JL, which means CR ⊥ AB.

The rest is straightforward. Let E be the intersection of CR and AB, so in particular,
E is the base of the altitude from C to AB. The area of ABC is 84, which gives

EC = 168
13

, hence EB = 70
13

. Using the fact that EB
EC

= RB
BC

, we have RB = 35/6 .
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