Individuals Tiebreaker 2022-2023 Solutions

Problem 1. Yor and Fiona are playing a match of tennis against each other. The first player to win 6 games wins the match (while the other player loses the match). Yor has currently won 2 games, while Fiona has currently won 0 games. Each game is won by one of the two players: Yor has a probability of $\frac{2}{3}$ to win each game, while Fiona has a probability of $\frac{1}{3}$ to win each game. Then, $\frac{m}{n}$ is the probability Fiona wins the tennis match, for relatively prime integers m, n. Compute m.

Proposed by Brian Yang

Solution: 835 .

Remark it will take at most 9 games to decide the winner of the tennis match. To this end, imagine Yor and Fiona play 9 more consecutive games of tennis, continuing to play even if the winner is decided. If Yor wins at least 4 games out of 9 , then Yor will have won at least 6 games in the (original) tennis match, hence winning the tennis match. Likewise, if Yor wins no more than 3 games out of 9, then Fiona will have won at least 6 games in the tennis match, hence Fiona wins the tennis match. Hence, the desired probability is

$$
\frac{1}{3^{9}}\binom{9}{0}+\frac{2}{3^{9}}\binom{9}{1}+\frac{2^{2}}{3^{9}}\binom{9}{2}+\frac{2^{3}}{3^{9}}\binom{9}{3}=\frac{835}{3^{9}} .
$$

The answer is 835 .
Problem 2. Jonathan and Eric are standing one kilometer apart on a large, flat, empty field. Jonathan rotates an angle of $\theta=120^{\circ}$ counterclockwise around Eric, then Eric moves half of the distance to Jonathan. They keep repeating the previous two movements in this order. After a very long time, their locations approach a point P on the field. What is the distance, in kilometers, from Jonathan's starting location to P ?

Proposed by Mathus Leungpathomaram

Solution: $\frac{2 \sqrt{21}}{7}$.
Let J_{n} and E_{n} be Jonathan's and Eric's positions in the complex plane after n sets of movements, with $J_{0}=0$ and $E_{0}=1$ being their starting positions. Observe that $E_{n}-J_{n+1}=e^{\frac{2 \pi i}{3}} \cdot\left(E_{n}-J_{n}\right)$, and $E_{n+1}-J_{n+1}=\frac{1}{2} \cdot\left(E_{n}-J_{n+1}\right)$. Combining these, we have $E_{n+1}-J_{n+1}=\frac{e^{\frac{2 \pi i}{3}}}{2} \cdot\left(E_{n}-J_{n}\right)$. Furthermore, J_{n}, E_{n}, J_{n+1} forms an isosceles triangle with a 120° angle in the complex plane, so that $J_{n+1}-J_{n}=\sqrt{3} e^{-\frac{\pi i}{6}} \cdot\left(E_{n}-J_{n}\right)$, so $J_{n+2}-J_{n+1}=\frac{e^{\frac{\pi i}{3}}}{2} \cdot\left(J_{n+1}-J_{n}\right)$. By induction, this means $J_{n+1}-J_{n}=\left(\frac{e^{\frac{2 \pi i}{3}}}{2}\right)^{n} \cdot\left(J_{1}-J_{0}\right)$ for all $n \geq 0$. Computing $|P|$:

$$
\begin{aligned}
P & =J_{0}+\sum_{n=0}^{\infty}\left(J_{n+1}-J_{n}\right)=\left(J_{1}-J_{0}\right) \cdot \sum_{n=0}^{\infty}\left(\frac{e^{\frac{2 \pi i}{3}}}{2}\right)^{n} \\
& =\sqrt{3} e^{-\frac{\pi i}{6}} \cdot \frac{1}{1-\frac{e^{\frac{2 \pi i}{3}}}{2}}=\frac{4 \sqrt{3} e^{-\frac{\pi i}{6}}}{4-(-1+\sqrt{3} i)}=\frac{4 \sqrt{3} e^{-\frac{\pi i}{6}}}{5-\sqrt{3} i} . \\
|P| & =\frac{4 \sqrt{3}}{\sqrt{5^{2}+(\sqrt{3})^{2}}}=\frac{4 \sqrt{3}}{\sqrt{28}}=\frac{2 \sqrt{21}}{7} .
\end{aligned}
$$

Remark: This problem can also be solved by using the facts $J_{1} P=\frac{J_{0} P}{2}, \angle J_{0} P J_{1}=120^{\circ}$, and then using Law of Cosines on $\triangle J_{0} J_{1} P$.

Problem 3. Suppose that a, b, c are complex numbers with $a+b+c=0,|a b c|=1,|b|=|c|$, and

$$
\frac{9-\sqrt{33}}{48} \leq \cos ^{2}\left(\arg \left(\frac{b}{a}\right)\right) \leq \frac{9+\sqrt{33}}{48} .
$$

Find the maximum possible value of $\left|-a^{6}+b^{6}+c^{6}\right|$.

Proposed by August Chen

Solution: $9-4 \sqrt{3}$.
Say $|a|=r^{2}$ for some $r>0$, so $|b|=|c|=\frac{1}{r}$. By a suitable rotation we can assume $a=r^{2}$ since all we care about is the final magnitude, so write $b=\frac{1}{r} e^{\theta_{1} i}, c=\frac{1}{r} e^{\theta_{2} i}$. We need $0=a+b+c=r^{2}+\frac{1}{r}\left(e^{\theta_{1} i}+e^{\theta_{2} i}\right)$, and this forces $\theta_{2}=-\theta_{1}$. Let $\theta=\theta_{1}$; notice that this equals $\arg \left(\frac{b}{a}\right)$. Now we have $\frac{2}{r} \cos \theta+r^{2}=0$, i.e. $r^{3}=-2 \cos \theta$. Now, $-a^{6}+b^{6}+c^{6}=-r^{12}+\frac{2}{r^{6}} \cos 6 \theta=-16 \cos ^{4} \theta+\frac{\cos 6 \theta}{2 \cos ^{2} \theta}$. We have $\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta$, so $\cos 6 \theta=$ $2\left(16 \cos ^{6} \theta-24 \cos ^{4} \theta+9 \cos ^{2} \theta\right)-1$. This means

$$
\begin{aligned}
\left|-a^{6}+b^{6}+c^{6}\right| & =\left|\frac{-32 \cos ^{6} \theta+32 \cos ^{6} \theta-48 \cos ^{4} \theta+18 \cos ^{2} \theta-1}{2 \cos ^{2} \theta}\right| \\
& =\left|24 \cos ^{2} \theta+\frac{1}{2 \cos ^{2} \theta}-9\right|
\end{aligned}
$$

For $x>0$, notice $24 x+\frac{1}{2 x} \leq 9$ if and only if $48 x^{2}-18 x+1 \leq 0$. The solution to this quadratic inequality is $\frac{9-\sqrt{33}}{48} \leq x \leq \frac{9+\sqrt{33}}{48}$. But this is exactly the condition on $\cos ^{2} \theta$! Thus, $24 \cos ^{2} \theta+\frac{1}{2 \cos ^{2} \theta} \leq 9$, so

$$
\left|24 \cos ^{2} \theta+\frac{1}{2 \cos ^{2} \theta}-9\right|=9-\left(24 \cos ^{2} \theta+\frac{1}{2 \cos ^{2} \theta}\right) \leq 9-2 \sqrt{12}=9-4 \sqrt{3}
$$

where the last step follows by AM-GM; this is justified as the equality case is $\cos ^{2} \theta=\sqrt{\frac{1}{48}} \in\left(\frac{9-\sqrt{33}}{48}, \frac{9+\sqrt{33}}{48}\right)$.
Problem 4. Let $A B C$ be a triangle with $A B=4, B C=5, C A=6$. Triangles $A P B$ and $C Q A$ are erected outside $A B C$ such that $A P=P B, \overline{A P} \perp \overline{P B}$ and $C Q=Q A, \overline{C Q} \perp \overline{Q A}$. Pick a point X uniformly at random from segment $\overline{B C}$. What is the expected value of the area of triangle $P X Q$?

Proposed by Brian Yang

Solution: $\frac{52+15 \sqrt{7}}{8}$.
Observe that $[P X Q]$ is directly proportional to the length l of the altitude of X onto $\overline{P Q}$, and that l is a linear function of $B X$. Hence, the distribution of $[P X Q]$ is uniform, and so it attains its expectation value precisely when X is the midpoint of $\overline{B C}$. Henceforth assume X is the midpoint of $\overline{B C}$; we need to compute $[P X Q]$.
Let D and E be the reflections of B and C over P and Q, respectively. Since $\triangle A P B$ and $\triangle C Q A$ are isosceles triangles with right angles at $\angle B P A$ and $\angle A Q C$, respectively, $\triangle D A B$ and $\triangle E A C$ are also isosceles right triangles (both of which are outside of $\triangle A B C$), each of which has a right angle at vertex A. In particular, there is a 90°

rotation around point A which maps C to E and D to B, implying that $\overline{C D} \perp \overline{E B}$ and $C D=B E$. Then by the midline theorem, $\triangle P X Q$ is a right triangle with $P X=\frac{C D}{2}=\frac{B E}{2}=X Q$.
Let $\theta=\angle C A D=\angle C A B+\angle B A D=\angle C A B+90^{\circ}$. Then, $\cos \theta=\cos \left(\angle C A B+90^{\circ}\right)=-\sin (\angle C A B)$. Applying the Law of Cosines in $\triangle A B C$, we get $\cos (\angle C A B)=\frac{9}{16}$, which means $\cos \theta=-\sin (\angle C A B)=-\frac{5 \sqrt{7}}{16}$. Now by the Law of Cosines in $\triangle C A D$:

$$
C D^{2}=C A^{2}+A D^{2}-2 \cdot C A \cdot A D \cdot \cos \theta=4^{2}+6^{2}+2 \cdot 4 \cdot 6 \cdot \frac{5 \sqrt{7}}{16}=52+15 \sqrt{7},
$$

using the fact $A D=A B=4$. The answer is $[P X Q]=\frac{1}{2}\left(\frac{C D}{2}\right)^{2}=\frac{C D^{2}}{8}=\frac{52+15 \sqrt{7}}{8}$.

