
CHMMC 2020-2021

Individual Round Solutions
1. A right triangle ABC is inscribed in the circular base of a cone. If two of the side lengths of ABC

are 3 and 4, and the distance from the vertex of the cone to any point on the circumference of the

base is 3, then the minimum possible volume of the cone can be written as mπ
√
n

p , where m, n, and
p are positive integers, m and p are relatively prime, and n is squarefree. Find m+ n+ p.

Solution: 12

By the Pythagorean Theorem, the side lengths of ABC are either 3,
√

7, 4 or 3, 4, 5. The slant
height of the cone is 3, and the radius of the circular base is either 2 or 5

2 , so the height of the cone,

by the Pythagorean Theorem, is either
√

5 or
√
11
2 , respectively. The volume of the cone, given by the

formula h
3 · πr

2, is either π
3 · 2

2 ·
√

5 or π
3 ·

52

22
·
√
11
2 . We see that the former number is smaller than the

latter, so the minimum volume of the cone is

1

3
·
√

5 · 22 · π =
4π
√

5

3
.

The requested sum is 12 .

2. Caltech’s 900 students are evenly spaced along the circumference of a circle. How many equilateral
triangles can be formed with at least two Caltech students as vertices?

Solution: 808500

There are
(
900
2

)
= 404550 pairs of students, and each pair can have an equilateral triangle on

either side of the line connecting them. However, some of the triangles have been triple-counted (i.e.
when the third vertex is another student). This happens 900

3 = 300 times for each inscribed equilateral

triangle. This yields 404550 · 2− 2 · 300 = 808500 equilateral triangles.

3. A Beaver-number is a positive 5 digit integer whose digit sum is divisible by 17. Call a pair of
Beaver-numbers differing by exactly 1 a Beaver-pair. The smaller number in a Beaver-pair is
called an MIT Beaver, while the larger number is called a CIT Beaver. Find the positive difference
between the largest and smallest CIT Beavers (over all Beaver-pairs).

Solution: 79200

If k is an MIT Beaver, then k + 1, the CIT Beaver, must have two carryovers in addition. This
is because the digit sum of k minus the digit sum of k + 1 must be a multiple of 17. Thus, k = abc99
where a 6= 0, c 6= 9. Clearly, a + b + c = 16. By trying to maximize and minimize with the leftmost
digits, we get that the largest and smallest MIT Beavers are 97099 and 17899, respectively. The
difference of these two MIT Beavers is the same as the difference of the largest and smallest CIT
Beavers, which is just 79200 .

4. Let P (x) = x3 − 6x2 − 5x+ 4. Suppose that y and z are real numbers such that

zP (y) = P (y − n) + P (y + n)

for all reals n. Evaluate P (y).

Solution: −22
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We claim that z = 2. By taking n = 0, we have that

zP (y) = 2P (y),

so z = 2 or P (y) = 0. Assume on the contrary that P (y) = 0. Observe that P (−10) < 0, P (0) =
4, P (2) = −22, P (10) > 0. Hence, by the Intermediate Value Theorem on [−10, 0], [0, 2], and [2, 10],
the three complex roots of P (x) are all real. Thus, if we take n such that P (y−n) = 0, then we must
also have P (y + n) = 0. So the three roots of P (x) are y − n, y, y + n. By Vieta’s formulas, 3y = 6
and y = 2 =⇒ P (2) = −22, which is a contradiction. Thus, z = 2.

Since z = 2, observe that we can take (y, P (y)) as the midpoint of the segment between (y −
n, P (y − n)) and (y + n, P (y + n)) for z = 2. Thus, there is Q(x) = mx + b such that the roots of
P (x)−Q(x) are y − n, y and y + n. The x2 coefficient of P (x)−Q(x) is −6, so by Vieta’s formulas,
3y = 6 and y = 2 =⇒ P (2) = −22 .

5. Let S be the sum of all positive integers n such that 3
5 of the positive divisors of n are multiples of

6 and n has no prime divisors greater than 3. Compute S
36 .

Solution: 2345

For a positive integer n = 2a3b, the fraction of positive divisors divisible by 2 is given by a
a+1 ,

as we have a + 1 total choices for the exponent of 2 in a positive divisor of n, a of which yields a
multiple of 2. Similarly, the fraction of positive divisors divisible by 3 is given by b

b+1 . Hence, the

fraction of positive divisors that are a multiple of 6 is ab
(a+1)(b+1) = 3

5 . This equation simplifies to
2ab− 3a− 3b− 3 = 0. Now, by Simon’s Favorite Factoring Trick, we have that

4ab− 6a− 6b− 6 = 0 =⇒ 4ab− 6a− 6b+ 9 = 15 =⇒ (2a− 3)(2b− 3) = 15,

yielding nonnegative integer solutions (a, b) = (9, 2), (4, 3), (3, 4), (2, 9). Thus,

S

36
=

2932 + 2433 + 2334 + 2239

36
= 2345 .

6. Let P0P5Q5Q0 be a rectangular chocolate bar, one half dark chocolate and one half white choco-
late, as shown in the diagram below. We randomly select 4 points on the segment P0P5, and
immediately after selecting those points, we label those 4 selected points P1, P2, P3, P4 from left
to right. Similarly, we randomly select 4 points on the segment Q0Q5, and immediately after
selecting those points, we label those 4 points Q1, Q2, Q3, Q4 from left to right. The segments
P1Q1, P2Q2, P3Q3, P4Q4 divide the rectangular chocolate bar into 5 smaller trapezoidal pieces of
chocolate. The probability that exactly 3 pieces of chocolate contain both dark and white chocolate
can be written as m

n , where m and n are relatively prime positive integers. Find m+ n.

Q0 Q5

P0 P5P1 P2 P3 P4

Q1 Q2 Q3 Q4

Solution: 39
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Let p be the number of points Pi (i ≥ 1) on the dark chocolate side of the bar, and q be the
number of points Qi (i ≥ 1) on the dark chocolate side of the bar. Then, if n is the number of pieces
containing both dark and white chocolate, we can see with inspection that

n = |p− q|+ 1.

Since we want n = 3, the ordered pairs (p, q) that work are (4, 2), (3, 1), (2, 0), (2, 4), (1, 3), and (0, 2).

Since each point is randomly chosen, the probability of each p ∈ {0, 1, 2, 3, 4} is

(
4
p

)
16 . Hence, the

probability that exactly 3 pieces of chocolate contain both dark and white chocolate is

2

((
4
4

)(
4
2

)
162

+

(
4
3

)(
4
1

)
162

+

(
4
2

)(
4
0

)
162

)
=

7

32
,

where we multiply by 2 due to the symmetry of binomial coefficients. The answer is 39 .

7. Given 10 points on a plane such that no three are collinear, we connect each pair of points with a
segment and color each segment either red or blue. Assume that there exists some point A among
the 10 points such that:

(1) There is an odd number of red segments connected to A

(2) The number of red segments connected to each of the other points are all different

Find the number of red triangles (i.e, a triangle whose three sides are all red segments) on the
plane.

Solution: 30

The problem can be quickly solved by simply playing around with the configuration and counting
the number of red triangles in a valid case. Here, we formally prove that the problem constraints
actually lead to a unique construction of red segments.

Let B1, B2, · · · , B9 be the 9 remaining points. For 1 ≤ i ≤ 9, we use xi to denote the number
of red segments connected to Bi. By the given assumption, we have that 0 ≤ xi ≤ 9 and xi’s are all
distinct. Without loss if generality, assume that x1 < x2 < · · · < x9.

We claim that x9 = 9. Assume on the contrary that x9 ≤ 8. Since xi+1 ≥ xi + 1 (1 ≤ i ≤ 8), we
can deduce that x1 ≤ x9 − 8 =⇒ x1 = 0. As the equalities must be attained, we can further deduce
that xi = i− 1 (∀1 ≤ i ≤ 9). Let xA denote the number of red segments connected to A. By the given
assumption, we have that xA must be odd. Thus, summing the “degrees” of red segments yields

9∑
i=1

xi + xA =

8∑
i=0

i+ xA = 36 + xA ≡ 1 (mod 2)

This leads to a contradiction, as this sum must be even (each red segment is counted twice in the
sum).

Thus, we must have x9 = 9, i.e, B9 is connected to all the other 9 vertices with one red segment.
This implies that xi ≥ 1 for 1 ≤ i ≤ 8. By applying the property xi+1 ≥ xi + 1 again, we can deduce
that x1 ≤ x9 − 8 = 1 =⇒ x1 = 1. As the equality must be attained, we can further deduce that
xi = i (∀1 ≤ i ≤ 9). Given that B1 is connected to B9 with one red segment and x1 = 1, we have that
there doesn’t exist any red segment connecting B1 and B8. However, since x8 = 8, we have that B8

is connected to B2, B3, · · · , B9, A (all the other points except B1) with red segments. Similarly, while
B2 is connected to B9 and B8 with two red segments while x2 = 2, we can deduce that B2 is only
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connected to B9 and B8 with red segments. By repeating such analysis, we can obtain the following
general conclusion:

For 1 ≤ i ≤ 4, B9−i is only connected to Bi+1, Bi+2, · · · , B9, A with 9− i red segments, while Bi
is only connected to B9, B8 · · · , B10−i with i red segments. This implies that A is only connected to
the five vertices B9, B8, B7, B6, B5 with five red segments. This shows that this two-colored graph is
uniquely determined. Below we will count the number of red triangles in this graph.

Partition the 10 vertices into two subsets: M = {B1, B2, B3, B4}, N = {A,B5, B6, B7, B8,
B9}. On the one hand, there does not exist any red segment connecting two vertices in M . On
the other hand, any two vertices in N are connected by a red segment. Furthermore, note that for
1 ≤ i ≤ 4, Bi ∈ M is connected to exactly i vertices in N with i red segments. Hence, for 2 ≤ i ≤ 4,
the number of red triangles with one of its vertices being Bi is given by

(
i
2

)
(when i = 1, there’s only

one red segment connected to B1, so no red triangle has B1 as one of its vertices). Note that the
number of red triangles in the subgraph formed by N is equal to

(
6
3

)
, we can finally conclude that the

total number of red triangles in the graph is given by(
2

2

)
+

(
3

2

)
+

(
4

2

)
+

(
6

3

)
= 1 + 3 + 6 + 20 = 30 .

8. Define

S = tan−1(2020) +
2020∑
j=0

tan−1(j2 − j + 1).

Then S can be written as mπ
n , where m and n are relatively prime positive integers. Find m+ n.

Solution: 4045

We see that

2020∑
j=0

tan−1(j2 − j + 1) =
π

4
+

2020∑
j=1

(
π

2
− tan−1

(
1

j2 − j + 1

))

=
π

4
+

2020∑
j=1

(
π

2
− tan−1

(
j − (j − 1)

1 + j(j − 1)

))

=
π

4
+

2020∑
j=1

(π
2
− tan−1(j) + tan−1(j − 1)

)
=
π

4
+ 1010π − tan−1(2020),

where we utilize the tangent subtraction formula: tan−1
(
j−(j−1)
1+j(j−1)

)
= tan−1(j)−tan−1(j−1). Adding

the tan−1(2020) term, we have that S = π
4 + 1010π = 4041π

4 =⇒ 4045 .

9. For a positive integer m, let ϕ(m) be the number of positive integers k ≤ m such that k and m are
relatively prime, and let σ(m) be the sum of the positive divisors of m. Find the sum of all even
positive integers n such that

n5σ(n)− 2

ϕ(n)

is an integer.
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Solution: 416

If pk | n for some odd prime p with k ≥ 2 then

p | φ(pk) | φ(n) =⇒ p | n5σ(n)− 2 =⇒ p | 2

since p | n5σ(n). This is a contradiction.

Now suppose n is not a power of 2. If 2k | n with k ≥ 2, then by the above we can write
n = 2kp1 · · · pm for odd primes p1, . . . , pm with m ≥ 1. ϕ(n) = 2k−1

∏m
i=1(pi − 1), so

v2(ϕ(n)) ≥ k − 1 +m ≥ 1 + 1 = 2

as all the pi are odd. This implies that 4 | n5σ(n)− 2 which is a contradiction as

2k | n, k ≥ 2 =⇒ n ≡ 0 (mod 4) =⇒ n5σ(n)− 2 ≡ 2 (mod 4)

Thus n = 2p1 · · · pm for odd primes p1, . . . , pm with m ≥ 1. If m ≥ 2, then as all the pi are odd,

v2(ϕ(n)) ≥ m ≥ 2

which again is a contradiction:

n ≡ 0 (mod 2) =⇒ n5 ≡ 0 (mod 4) =⇒ n5σ(n)− 2 ≡ 2 (mod 4)

This means that if n is not a power of 2, then n = 2p for an odd prime p, so σ(n) = 1+2+p+2p = 3p+3.
The condition means

p− 1 | 32p5(3p+ 3)− 2 =⇒ p− 1|190

since the remainder of 32p5(3p+3)−2 upon division by p−1 is 32 ·1 · (6)−2 = 190 by the Polynomial
Remainder Theorem. 190 = 2 · 5 · 19 and p− 1 must be even, so p = 3, 11, 191 since 39 is not a prime.
By the above reasons, all these solutions work; we have n = 6, 22, 382 as possible solutions.

Otherwise suppose n is a power of two, so write n = 2k. Since n is even, k ≥ 1. We also have
σ(n) = 1 + 2 + · · · + 2k = 2k+1 − 1. Plugging into the condition, 2k−1 | 25k(2k+1 − 1) − 2. If k ≥ 3,
2k−1 ≡ 0 (mod 4), 25k(2k+1 − 1) − 2 ≡ 2 (mod 4) which is a contradiction. However, we can check
that k = 1, 2 both work. This yields the solutions n = 2, 4.

So the answer is 2 + 4 + 6 + 22 + 382 = 416 .

10. A research facility has 60 rooms, numbered 1, 2, . . . 60, arranged in a circle. The entrance is in
room 1 and the exit is in room 60, and there are no other ways in and out of the facility. Each
room, except for room 60, has a teleporter equipped with an integer instruction 1 ≤ i < 60 such
that it teleports a passenger exactly i rooms clockwise.

On Monday, a researcher generates a random permutation of 1, 2, . . . , 60 such that 1 is the first
integer in the permutation and 60 is the last. Then, she configures the teleporters in the facility
such that the rooms will be visited in the order of the permutation.

On Tuesday, however, a cyber criminal hacks into a randomly chosen teleporter, and he reconfigures
its instruction by choosing a random integer 1 ≤ j′ < 60 such that the hacked teleporter now
teleports a passenger exactly j′ rooms clockwise (note that it is possible, albeit unlikely, that the
hacked teleporter’s instruction remains unchanged from Monday). This is a problem, since it is
possible for the researcher, if she were to enter the facility, to be trapped in an endless “cycle” of
rooms.

The probability that the researcher will be unable to exit the facility after entering in room 1 can
be written as m

n , where m and n are relatively prime positive integers. Find m+ n.
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Solution: 88

Let a1, a2, . . . , a60 be the unique permutation of 1, 2, . . . , 60 such that ai is the ith room visited.
Obviously, a1 = 1, a60 = 60. Assuming no glitch, the path of rooms visited by the researcher is clearly

a1 → a2 → · · · → a59 → a60.

If the teleporter in room a1 is hacked, then the path a1 → a2 becomes a1 → aj′ for some random
j′ ∈ {2, 3, . . . , 60}. Thus, the researcher will always be able to eventually reach a60. This case occurs
with a 1

59 probability, and has a 0 probability of the researching failing to exit the facility.

If the teleporter in room ai is hacked, where i ∈ {2, 3, . . . , 59} then the path ai → ai+1 becomes
ai → aj′ for some random j′ ∈ {1, 2, . . . 60}, j′ 6= i. We see that the researcher can exit the facility if
and only if j′ ≥ i + 1. Otherwise, the “farthest” room the researcher can reach will be ai, and the
path ai → aj′ will send the researcher “back”, causing them to be stuck in an infinite loop. This case
occurs with a 1

59 probability (for each i), and has a i−1
59 chance of the researcher failing to exit the

facility.

Hence, the total probability the researcher is unable to exit the facility is given by

1

59
·

59∑
i=2

i− 1

59
=

1

59
· 58 · 59

2 · 59
=

29

59
.

The answer is thereby 88 .

11. Let n ≥ 3 be a positive integer. Suppose that Γ is a unit circle passing through a point A. A
regular 3-gon, regular 4-gon, . . . , regular n-gon are all inscribed inside Γ such that A is a common
vertex of all these regular polygons. Let Q be a point on Γ such that Q is a vertex of the regular
n-gon, but Q is not a vertex of any of the other regular polygons. Let Sn be the set of all such
points Q. Find the number of integers 3 ≤ n ≤ 100 such that∏

Q∈Sn

|AQ| ≤ 2.

Solution: 68

If we label the other points of the regular n-gon Q1, Q2, . . . , Qn−1, we see that the regular n-gon
AQ1Q2 . . . Qn−1 only shares the vertex A with a regular k-gon if k is relatively prime to n. Thus, it is
possible for some Qj to lie on some regular k-gon containing point A (where k < n) if and only if k
and n share some common divisor greater than 1. Suppose that the greatest common divisor of j and
n is greater than 1. Then, if we let k = n

d , where d is any divisor of gcd(j, n), we see that the regular
k-gon passes through point Qj . Hence, the set Sn of all points Qj that only lie on the regular n-gon
are those that satisfy gcd(j, n) = 1.

There is one exception to this conclusion, and it is the case n = 4. This is because there is no
“regular 2-gon”. We will address this case at the end of our solution.

Our desired product is ∏
1≤i≤n,gcd(j,n)=1

|AQj | ≤ 2.

If we let w = e
2πi
n (a primitive nth root of unity), observe that |AQj | = |1 − wj |. Furthermore, we

know that the polynomial with the primitive nth roots of unity is the cyclotomic polynomial Φn(z).
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Hence, we see that

Φn(z) =
∏

1≤j≤n,gcd(j,n)=1

(z − wj)

=⇒
∏

1≤j≤n,gcd(j,n)=1

|AQj | =
∏

1≤j≤n,gcd(j,n)=1

|1− wj | = |Φn(1)|,

since each of the terms wj describes a primitive nth root of unity. Thus, we want to find all n such
that |Φn(1)| = 1. Let p be a prime number and m be a positive integer. We claim that

Φn(1) =

{
p n = pm

1 otherwise
.

We prove the first case (n is a prime power) by strong induction on m.

For the base case m = 1, note that Φn(z) = 1 + z + · · ·+ zn−1, so Φn(1) = n.

For the induction step m > 1, assume the statement is true for all 1 ≤ m0 < m. As a well-known
property of cyclotomic polynomials, we have that zn− 1 =

∏
d|n Φd(z), so f(z) = 1 + z+ · · ·+ zn−1 =∏m

j=1 Φpj (z). Observe that f(1) = pm on the left hand side. On the right hand side, we have that

Φpj (1) = p term for each j < m, so the equation simplifies to f(1) = pm = pm−1Φn(1) =⇒ Φn(1) = p.

Now suppose that n is the product of s ≥ 2 distinct primes: n = pα1
1 pα2

2 . . . pαss . Once again, we
see that f(z) = 1 + z + · · · + zn−1 =

∏
d|n,d 6=1 Φd(z). Let D be the nonempty set of all divisors of n

that are a product of > 1 distinct primes. We observe that∏
d∈D

Φd(z) =

∏
d|n,d 6=1 Φd(z)∏s

j=1

∏αj
l=1 Φplj

(z)

=⇒
∏
d∈D

Φd(1) =

∏
d|n,d 6=1 Φd(1)∏s

j=1

∏αj
l=1 Φplj

(1)
=

n

pα1
1 pα2

2 . . . pαss
= 1.

Cyclotomic polynomials are monic, have integer coefficients, and do not have any real roots n > 2, so
the value of Φn(z) is a positive integer for all integers z. However,

∏
d∈D Φd(1) = 1, so we see that

φd(1) = 1 for all d ∈ D, including n.

Finally, for the case n = 4, there is a square AQ1Q2Q3 which does not share any vertices with the
equilateral triangle other than A, so the desired product is |AQ1||AQ2||AQ3| =

√
2 · 2 ·

√
2 = 4 > 2.

Thus, the the number of desired integers is the 98 integers from 3 to 100 inclusive minus the
primes and prime powers excluding 8, 16, 32, 64, the prime powers of 2 except for 4. We have a total
of 34 primes and prime powers from 3 to 100, so the answer is 98− 34 + 4 = 68 .

12. Let Ω1 and Ω2 be two circles intersecting at distinct points P and Q. The line tangent to Ω1 at
P passes through Ω2 at a second point A, and the line tangent to Ω2 at P passes through Ω1 at a
second point B. Ray AQ intersects Ω1 at a second point C, and ray BQ intersects Ω2 at a second
point D. Suppose that ∠CPD > ∠APB (measuring both angles as the non-reflex angle) and that

Area(CPD)

PA · PB
=

1

4
.

Find the sum of all possible measures of ∠APB in degrees.

Solution: 130
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O1

O2

P

Q
B

A

C

D

Let O1, O2 be the respective centers of Ω1,Ω2. We claim that 4CPA ∼ 4O1PO2 ∼ 4BPD. To
see why, note that ∠PO1O2 subtends an arc equal to 1

2 of P̂Q in Ω1, and ∠PO2O1 subtends an arc

equal to 1
2 of P̂Q in Ω2. Since O1, O2 are circle centers, we see that ∠PCA ∼= ∠PBD ∼= ∠PO1O2 and

∠PAC ∼= ∠PDB ∼= ∠PO2O1, so the respective triangles are similar by AA.

Since PB is tangent to Ω2, we see that m∠BPO2 = 90◦. Similarly, m∠APO1 = 90◦. Thus, we
can let m∠O1PB = m∠O2PA = θ for some real number θ. Hence, m∠BPA = 90◦ − θ,m∠O1PO2 =
m∠CPA = m∠BPD = 90◦+θ, so we also conclude thatm∠CPO1 = m∠DPO2 = θ. Since PO1, PO2,
respective radii of Ω1,Ω2, bisect respective angles ∠CPB and ∠DPA, we conclude that PC = PB
and PD = PA. Furthermore, m∠CPD = 90◦+3θ. Since ∠CPD > ∠APB, we must have that θ > 0.
Finally, we observe that

Area(CPD)

PA · PB
=

1

4
=

1
2 · PC · PB · sin(CPD)

PC · PB
=

1

2
· sin(CPD),

so we want sin(CPD) = sin(90◦+3θ) = 1
2 . Since θ can be at most 90◦ (as m∠O1PO2 ≤ 180◦, we have

that 90◦ + 3θ = 150◦, 210◦, 330◦. This gives values of θ : 20◦, 40◦, 80◦. The possible values of ∠APD
are therefore 90 − θ; in degrees, that is {10, 50, 70}. Also, we can easily check that the non-reflex
∠CPD (which is 150◦ and 30◦) is clearly larger than the respective ∠APD. Hence, the answer is
130 .

13. Let a, b, c, d be reals such that a ≥ b ≥ c ≥ d and

(a− b)3 + (b− c)3 + (c− d)3 − 2(d− a)3

− 12(a− b)2 − 12(b− c)2 − 12(c− d)2 + 12(d− a)2

− 2020(a− b)(b− c)(c− d)(d− a) = 1536.

Find the minimum possible value of d− a.

Solution: −8

Substitute nonnegative real numbers x = a− b, y = b− c, z = c− d to obtain

x3 + y3 + z3 + 2(x+ y + z)3 + 24(xy + yz + xz) + 2020(x+ y + z)xyz = 1536.
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Substitute p = x+ y + z, q = xy + yz + xz, r = xyz to obtain

p3 − 3pq + 3r + 24q + 2p3 + 2020pr = 1536.

If we let p = 8, the equation becomes (3 + 2020 · 8)r + 1536 = 1536, which is possible if at least
one of x, y, z = 0. If p > 8, then the equation is

3q(8− p) + 3r + 2020pr = 1536− 3p3

and we claim this is impossible. To see why, we note that q < p2 =⇒ q < p2 + 8p + 64 =⇒
3q(8− p) > 1536− 3p3; however, 3r + 2020pr is nonnegative, so the above equation cannot hold.

Hence, the maximum of p = x+y+z is 8. However, x+y+z = a−d, implying that the minimum
possible value of d− a is the negative, −8 .

14. Let a be a positive real number. Collinear points Z1, Z2, Z3, Z4 (in that order) are plotted on the
(x, y) Cartesian plane. Suppose that the graph of the equation

x2 + (y + a)2 + x2 + (y − a)2 = 4a2 +
√

(x2 + (y + a)2)(x2 + (y − a)2)

passes through points Z1 and Z4, and the graph of the equation

x2 + (y + a)2 + x2 + (y − a)2 = 4a2 −
√

(x2 + (y + a)2)(x2 + (y − a)2)

passes through points Z2 and Z3. If Z1Z2 = 5, Z2Z3 = 1, and Z3Z4 = 3, then a2 can be written

as
m+n

√
p

q , where m, n, p, and q are positive integers, m, n, and q are relatively prime, and p is
squarefree. Find m+ n+ p+ q.

Solution: 144

Let P = (a, 0), Q = (−a, 0). By the Law of Cosines, we can see that

x2 + (y + a)2 + x2 + (y − a)2 = 4a2 +
√

(x2 + (y + a)2)(x2 + (y − a)2)

is the set of all points S1 such that ∀R1 ∈ S1, ∠PR1Q = 60◦ or R1 = P,Q. Likewise, we can see that

x2 + (y + a)2 + x2 + (y − a)2 = 4a2 −
√

(x2 + (y + a)2)(x2 + (y − a)2)

is the set of all points S2 such that ∀R2 ∈ S2, ∠PR2Q = 120◦ or R2 = P,Q. Hence, these two sets
collectively describe the circles ω1, ω2 given by the following two equations:

ω1 :
(
x+

r

2

)2
+ y2 = r2, ω2 :

(
x− r

2

)2
+ y2 = r2,

where r = 2a√
3
.

WLOG let Z1, Z2, Z3, Z4 have increasing x coordinates. Then we have that Z1, Z3 ∈ ω1, Z2, Z4 ∈
ω2. Let O1, O2 be the respective centers of ω1, ω2. Further let H1, H2 be the respective feet of the
perpendiculars onto Z1Z4 from O1, O2. Then, we see that Z1H1 = Z1Z3

2 = 3 and H2Z4 = Z2Z4
2 = 2,

so H1H2 = 4, O1H1 =
√
r2 − 9, and O2H2 =

√
r2 − 4. Also, ω1 and ω2 pass through each others’

centers, so O1O2 = r.

Therefore, by the Pythagorean Theorem on right trapezoid O1O2H2H1,

42 +
(√

r2 − 4−
√
r2 − 9

)2
= r2 =⇒ r2 =

29± 2
√

109

3
,

of which only the positive solution yields real values of
√
r2 − 4,

√
r2 − 9. Hence, a2 = 29+2

√
109

4 , and

the answer is 144 .
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15. For an integer n ≥ 2, let Gn be an n× n grid of unit cells. A subset of cells H ⊆ Gn is considered
quasi-complete if and only if each row of Gn has at least one cell in H and each column of Gn has
at least one cell in H. A subset of cells K ⊆ Gn is considered quasi-perfect if and only if there is a
proper subset L ⊂ K such that |L| = n and no two elements in L are in the same row or column.

Let ϑ(n) be the smallest positive integer such that every quasi-complete subset H ⊆ Gn with
|H| ≥ ϑ(n) is also quasi-perfect. Moreover, let %(n) be the number of quasi-complete subsets
H ⊆ Gn with |H| = ϑ(n)− 1 such that H is not quasi-perfect. Compute ϑ(20) + %(20).

Solution: 7963

We claim that ϑ(n) = n2 − 2n + 3, %(n) = n2(n − 1). For n = 2, this is easy to check manually,
so now suppose n ≥ 3.

Consider the subset K ⊆ Gn containing every entry of the first n− 2 columns of Gn and the first
entry of the last 2 columns of Gn, where we read the columns of Gn from left to right. K is clearly
quasi-complete but it is not quasi-perfect, so it follows that ϑ(n) ≥ n2 − 2n+ 3.

Now we show that every quasi-complete subset H ⊂ Gn with |H| = ϑ(n) = n2 − 2n + 3 is also
quasi-perfect. Consider the elements in H in each of the rows of Gn as a family of n subsets of
{1, 2, . . . , n}, H is quasi-perfect iff there is a transversal through these sets. To this end, take the
permutation σ : {1, 2, . . . , n} → {1, 2, . . . , n} and the nondecreasing sequence a1, a2, . . . , an such that
ai is the number of elements in H that are in row σ(i) of Gn. H is quasi-complete, so a1 ≥ 1. By Hall’s
Marriage Theorem, it is possible for H to not be quasi-perfect only if the “violation” ai < i occurs for
some 2 ≤ i ≤ n− 1 (note: we do not worry about an since we assume that H is quasi-complete).

Let f(i) = i(i − 1) + n(n − i), this is the maximum number of elements H can have for some
“violation” ai < i. The inequality f(i) ≥ |H| = n2 − 2n + 3 must be satisfied. f(i) is convex, so the
absolute maxima of f(i) on [2, n − 1] occur at the extremes i = 2, n − 1, where f(i) = n2 − 2n + 2.
The maxima do not satisfy the above inequality, so H is always quasi-perfect.

Now, we compute the number of quasi-complete subsets H ⊂ Gn, |H| = ϑ(n) − 1 = n2 − 2n + 2
that are not quasi-perfect. Define a1, a2, . . . , an and f(n) as before. Since |H| = n2− 2n+ 3, we must
either have an = n− 1 or an = n.

If an = n − 1, then the inequality f(i) − 1 ≥ |H| = n2 − 2n + 2 must be satisfied for some
“violation” ai < i. By the previous argument, this inequality is never satisfied. If an = n, then the
required inequality is f(i) ≥ |H| = n2 − 2n + 2, which is satisfied for the cases i = 2, n − 1 (it is an
equality). In fact, the sequence a1, a2, . . . , an is either 1, 1, n, n, . . . , n︸ ︷︷ ︸

n− 2 numbers

or n− 2, n− 2, . . . , n− 2︸ ︷︷ ︸
n− 1 numbers

, n.

On the one hand, if a1, a2, . . . , an = 1, 1, n, n, . . . , n, then observe by Hall’s Marriage Theorem
that the two rows with 1 element in H share the same column. There are

(
n
2

)
ways to choose the

two rows with 1 element, and n ways to choose the shared column, yielding n2(n−1)
2 non quasi-perfect

subsets H. On the other hand, if a1, a2, . . . , an = n − 2, n − 2, . . . , n − 2, n, we can visualize this as

a 90◦ “rotation” of the n × n grid from the previous case. Thus, this case also yields n2(n−1)
2 non

quasi-perfect subsets H. Hence, %(n) = n2(n− 1).

The requested sum is ϑ(20) + %(20) = 363 + 7600 = 7963 .

Remark: for all n+ 1 ≥ k ≥ ϑ(n)− 1, consider a subset H ⊆ K ⊂ Gn, |H| = k, |K| = ϑ(n)− 1. If

K is quasi-complete but not quasi-perfect, we may also carefully “construct” H such that it is quasi-

complete but not quasi-perfect. If L ⊂ Gn, |L| ≤ n, then L cannot be quasi-perfect: it has no proper

quasi-complete subset.
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