
Team Round 2022-2023 Solutions
Problem 1. A wall contains three switches A,B,C, each of which powers a light when flipped on. Every 20
seconds, switch A is turned on and then immediately turned off again. The same occurs for switch B every 21
seconds and switch C every 22 seconds. At time t = 0, all three switches are simultaneously on.
Let t = T > 0 be the earliest time that all three switches are once again simultaneously on. Compute the number
of times t > 0 before T when at least two switches are simultaneously on.

Proposed by Nathan Hasegawa

Solution: 39 .
Since switches A,B,C are on only when t is a multiple of 20,21,22, respectively, the earliest time T that all
three switches are once again on is precisely lcm(20,21,22). Now, switches A,B are simultaneously on only
when t is a common multiple of 20 and 21, i.e. when t is a multiple of lcm(20,21) = 420. The number of
positive multiples of lcm(20,21) less than lcm(20,21,22), i.e. the number of times t > 0 switches A,B are
simultaneously on before time T , is exactly lcm(20,21,22)

lcm(20,21) − 1. The analagous statements hold for switches B,C
and switches A,C. Moreover, for any time 0 < t < T when at least two switches are on, there are in fact exactly
two switches on. Compute lcm(20,21) = 420, lcm(21,22) = 462, lcm(20,22) = 220, lcm(20,21,22) = 4620.
Hence, the answer is (

4620
420

−1
)
+

(
4620
462

−1
)
+

(
4620
220

−1
)
= 10+9+20 = 39 .

Problem 2. Select a number X from the set of all 3-digit natural numbers uniformly at random. Let A ∈ [0,1]
be the probability that X is divisible by 11, given that it is palindromic. Let B ∈ [0,1] be the probability that X
is palindromic, given that it is divisible by 11. Compute B−A.
Recall that a 3-digit number is a palindrome if it reads the same left to right as right to left. For instance, 484
is a palindrome, but 603 is not a palindrome.

Proposed by Natalie Couch

Solution:
4

405
.

For any palindromic 3-digit number, there are 9 choices for the hundreds digit (which determines the units
digit) and 10 choices for the tens digit, so there are a total of 90 palindromic 3-digit numbers. The smallest
and largest 3-digit multiples of 11 are 110 and 990, respectively, so there are 1

11 · (990−110)+1 = 81 3-digit
multiples of 11. Now, a 3-digit number abc is both palindromic and a multiple of 11 if and only if a = c and
a− b+ c is a multiple of 11. Here, a− b+ c may only take the values 0 or 11 if it is a multiple of 11. Then,
there are exactly 8 pairs (a,b) giving rise to 3-digit palindromic multiples of 11:

(1,2),(2,4),(3,6),(4,8),(6,1),(7,3),(8,5),(9,7).

This means A = 8
90 , B = 8

81 , so the answer is B−A = 8
81 −

8
90 =

4
405

.

Problem 3. Let a1,a2, . . . be a strictly increasing sequence of positive real numbers such that a1 = 1,a2 = 4,
and that for every positive integer k, the subsequence a4k−3,a4k−2,a4k−1,a4k is geometric and the subsequence
a4k−1,a4k,a4k+1,a4k+2 is arithmetic. For each positive integer k, let rk be the common ratio of the geoemtric
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sequence a4k−3,a4k−2,a4k−1,a4k. Compute

∞

∑
k=1

(rk −1)(rk+1 −1).

Proposed by Brian Yang

Solution:
3
2

.

For each positive integer k, we may write a4k+1 = 2a4k − a4k−1, a4k+2 = 3a4k − 2a4k−1 using the arithmetic
sequence formula. Hence,

rk =
a4k

a4k−1
, rk+1 =

a4k+2

a4k+1
=

3a4k −2a4k−1

2a4k −a4k−1
=

3− 2
rk

2− 1
rk

=
3rk −2
2rk −1

We claim rk =
6(k−1)+4
6(k−1)+1 , with the proof by induction. The base case k = 1 is clear. Given that the formula for rk

holds, we have

rk+1 =
3
(

6(k−1)+4
6(k−1)+1

)
−2

2
(

6(k−1)+4
6(k−1)+1

)
−1

=
18(k−1)+12−12(k−1)−2
12(k−1)+8−6(k−1)−1

=
6k+4
6k+1

.

which is exactly what we want. Hence, rk −1 = 3
6(k−1)+1 , so we want to compute

3
1
· 3

7
+

3
7
· 3

13
+ · · ·= 9

(
1

1 ·7
+

1
7 ·13

+ . . .

)
.

For each positive integer k, we have the partial fraction decomposition 1
(6k−5)(6k+1) =

1
6 · (

1
6k−5 −

1
6k+1). So the

above expression telescopes:

9
(

1
1 ·7

+
1

7 ·13
+ . . .

)
= 9 · 1

6
·
(

1
1
− 1

7
+

1
7
− 1

13
+ . . .

)
=

3
2
.

Problem 4. Gus is an inhabitant on an 11 by 11 grid of squares. He can walk from one square to an adjacent
square (vertically or horizontally) in 1 unit of time. There are also two vents on the grid, one at the top left
and one at the bottom right. If Gus is at one vent, he can teleport to the other vent in 0.5 units of time. Let an
ordered pair of squares (a,b) on the grid be sus if the fastest path from a to b requires Gus to teleport between
vents. Walking on top of a vent does not count as teleporting between vents.
What is the total number of ordered pairs of squares that are sus? Note that the pairs (a1,b1) and (a2,b2) are
considered distinct if and only if a1 ̸= a2 or b1 ̸= b2.

Proposed by Mathus Leungpathomaram

Solution: 1430 .
Let [n] = {1,2, . . . ,n}. We solve the problem for general n by n lattices [n]2 ⊂ Z2 with vents v0,v1 at (1,n) (the
top left) and (n,1) (the bottom right), respectively. For any points a= (x0,y0),b= (x1,y1)∈Z2, let d(a,b) be its
usual taxicab distance, and let d̃(a,b) := |(y1 − x1)− (y0 − x0)| be an adjusted taxicab distance (geometrically,
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d̃(a,b) is the “taxicab distance” between the line of slope 1 through a and the line of slope 1 through b). Note
that d̃(a,b)≤ d(a,b). For any square a ∈ [n]2, define

B := B(a) = {b ∈ [n]2 | d̃(a,b)≥ n}.

We claim (a,b) is sus if and only if b ∈ B.
Fix a = (x0,y0) ∈ [n]2. For any b = (x1,y1) ∈ [n]2, the fastest path from a to b is either a direct path (i.e.,
no teleporting between vents), taking d(a,b) units of time, or teleports between vents at most once, taking
d(a,v0)+ d(v1,b)+ 1

2 or d(a,v1)+ d(v0,b)+ 1
2 units of time. Now, observe d(a,v0)+ d(v1,b) is the taxicab

distance from a to (x1 − (n−1),y1 +(n−1)), by applying a translation of [n]2 that moves v1 to v0. Similarly,
d(a,v1)+d(v0,b) is the taxicab distance from a to (x1 +(n−1),y1 − (n−1)). Hence, (a,b) is sus if and only
if d(a,b) = |x0 − x1|+ |y0 − y1| is strictly greater than at least one of

|x0 − x1 +(n−1)|+ |y0 − y1 − (n−1)|= 2(n−1)+(x0 − x1)+(y1 − y0) = 2(n−1)± d̃(a,b),

|x0 − x1 − (n−1)|+ |y0 − y1 +(n−1)|= 2(n−1)+(x1 − x0)+(y0 − y1) = 2(n−1)∓ d̃(a,b).

In particular, when d̃(a,b) > n− 1, one of the above two expressions will be at most n− 1, meaning (a,b) is
sus.
In case d(a,b)≤ n−1, we have d̃(a,b)≤ n−1, in which the above condition shows that (a,b) is not sus. Now,
suppose n ≤ d(a,b)≤ 2(n−1). Any shortest direct path from a to b will move H = |x1 −x0| units horizontally
and V = |y1 −y0| units vertically; observe that H,V ≥ d(a,b)− (n−1). Then, d̃(a,b) = |H ±V |. If we impose
the condition d̃(a,b)≤ n−1, then it is necessary that d̃(a,b) = |H −V |, meaning d̃(a,b)≤ 2(n−1)−d(a,b).
Hence, (a,b) is not sus whenever d̃(a,b)≤ n−1. This proves the desired claim on B.
For all integer values of d between 1 and n− 1, there are 2d points a distance d − 1 from a vent. For each of
those 2d points a, our characterization of the region B(a) gives rise to a simple geometric description: B(a) is
a right triangle—the right angle at the vent furthest from a—with base and height n− d (hence consisting of
(n− d)(n− d + 1)/2 points). On the other hand, for any point a on the x = y diagonal, the set B(a) is empty.
Hence, the total number of sus pairs is:

n−1

∑
d=1

d(n−d)(n−d +1).

Observe the value of the expression remains the same if we substitute d for n− d. Then, averaging the two
quantities:

n−1

∑
d=1

d(n−d)(n−d +1) =
n+2

2
·

n−1

∑
d=1

d(n−d)

=
n+2

2
· n(n−1)(n+1)

6
=

n(n+1)(n+2)(n−1)
12

where we use the fact ∑
n−1
d=1 d(n−d) = ∑

n−1
d=1 ∑

d
k=1 k = ∑

n−1
d=1

(d+1
2

)
=
(n+1

3

)
. Plugging in n = 11:

n(n+1)(n+2)(n−1)
12

=
13 ·12 ·11 ·10

12
= 1430 .

Problem 5. Let ABC be a triangle with AB = 6,AC = 8,BC = 7. Let H be the orthocenter of ABC. Let D ̸= H
be a point on AH such that ∠HBD = 3

2∠CAB+ 1
2∠ABC− 1

2∠BCA. Find DH.
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Proposed by August Chen

Solution:
251

√
15

255
.

Denote by B′ the reflection of B over side AC.

C A

B

B′

H

D

Note ∠DBH = 3
2∠A+ 1

2∠B− 1
2∠C =∠A+ 1

2 ·180◦−∠C =∠A+90◦−∠C. Notice that ∠A >∠C, so ∠DBH is
obtuse. Thus, D must lie on AH such that D is closer to H than to A; otherwise, ∠DHB =∠AHB = 180◦−∠C,
implying to the contrary ∠DBH < ∠C. So points A,B lie on the same side of DD′. Moreover, ∠HAB′ =
∠HAC+∠CAB′ = 90◦−∠C+∠A, so B′,A,B,D are concyclic.
We want to compute HD using power of a point HA ·HD = HB ·HB′. Let R be the circumradius of △ABC.
By well-known properties of orthocenters, we have HA = 2RcosA,HB = 2RcosB. Now, HB′ = BB′−BH, and
AC ·BB′ = 4 · [ABC] = 4 · 1

2 · (BC)(AB)sinB. We compute

cosA =
62 +82 −72

2 ·6 ·8
=

17
32

, cosB =
62 +72 −82

2 ·6 ·7
=

1
4
, sinB =

√
15
4

, R =
AC

2sinB
=

16
√

15
15

.

Putting everything together, we have

HD =
HB
HA

·HB′ =
cosB
cosA

·
(

2 · (BC)(AB)
AC

· sinB−2RcosB
)

=
1/4

17/32
·

(
2 · 6 ·7

8
·
√

15
4

−2 · 16
√

15
15

· 1
4

)
=

251
√

15
255

.

Problem 6. Let A be a set of 8 elements, and B := (B1, . . . ,B7) be an ordered 7-tuple of subsets of A. Let N
be the number of such 7-tuples B such that there exists a unique 4-element subset I ⊆ {1,2, . . . ,7} for which
the intersection

⋂
i∈I Bi is nonempty. Find the remainder when N is divided by 67.
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Proposed by Brian Yang

Solution: 23 .
Let’s write A = {1,2, . . . ,8}. Consider a 7×8 array of bits (0’s and 1’s), where row i represents Bi and column j
represents j ∈ A. Namely, entry (i, j) equals 1 if and only if j ∈ Bi. Then, the set of all possible 7-tuples B is in
one-to-one correspondence with such arrays of bits. Observe that under this bijection, the task is to compute the
number of 7×8 arrays where there exists a non-empty subset J ⊆ A (we call this the set of activated columns)
and a 4-element subset I ⊆ {1,2, . . . ,7}, such that

• For each column j ∈ J, the entry (i, j) equals 1 precisely when i ∈ I.

• For each column j /∈ J, at most 4 entries of column j equals 1.

That is, a 7×8 array satisfies the above conditions, i.e. is valid, if and only if the original tuple B satisfies the
conditions of the problem with J =

⋂
i∈I Bi. Remark any 7× 8 array satisfying the above conditions must be

associated to a unique pair (I,J), so it suffices to count the number of valid arrays over all possible pairs (I,J).
Let us fix I. Given J ⊆ A, there are |J| activated columns, each of which has one possible configuration of
bits, and 8−|J| inactive columns, each of which has

(7
0

)
+
(7

1

)
+
(7

2

)
+
(7

3

)
= 64 possible configurations of bits.

Hence, there are a total of 26(8−|J|) possible configurations of bits. Now, for any given cardinality k, there are(8
k

)
choices of J such that |J|= k. It follows that there are(

8
1

)
242 +

(
8
2

)
236 + · · ·+

(
8
7

)
26 +

(
8
8

)
= (1+26)8 −248 = 658 −648

valid arrays over all pairs (I,J) with this fixed I. Since there are
(7

4

)
= 35 choices of I, we have

N = 35(658 −648) =⇒ N ≡ 23 (mod 67).

Problem 7. Let N0 be the set of all non-negative integers. Let f : N0 ×N0 →N0 be a function such that for all
non-negative integers a,b:

f (a,b) = f (b,a),

f (a,0) = 0,

f (a+b,b) = f (a,b)+b.

Compute
30

∑
i=0

2i−1

∑
j=0

f (2i, j).

Proposed by Mathus Leungpathomaram

Solution: 261 −235 .
We begin with the following characterization of f :
Lemma: f (a,b) = a+b−gcd(a,b) when a,b are not both 0 and f (0,0) = 0.
Proof : We use strong induction over n = max{a,b}. When n = 0, f (0,0) = 0. Suppose that the closed form is
correct for all n ≤ k. Consider the case where n = k+1. Then max{a,b}= k+1 and WLOG let a = k+1. If
b = k+1:

f (a,b) = f (k+1,k+1) = f (0,k+1)+ k+1 = k+1,
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k+1 = (k+1)+(k+1)−gcd(k+1,k+1) = a+b−gcd(a,b).

If b = 0:
f (a,b) = f (k+1,0) = 0 = (k+1)+0−gcd(k+1,0) = a+b−gcd(a,b).

Otherwise, 1 ≤ b ≤ k, so a−b ≤ k, so max{b,a−b} ≤ k, so:

f (a,b) = f (a−b,b)+b = ((a−b)+b−gcd(a−b,b))+b = a+b−gcd(a−b,b).

By the Euclidean algorithm, gcd(a−b,b) = gcd(a,b). Then,

f (a,b) = a+b−gcd(a−b,b) = a+b−gcd(a,b).

By the induction hypothesis, the closed form is correct for all non-negative integer values of a,b.
Now, note that

2i−1

∑
j=0

gcd(2i, j) =
i−1

∑
n=0

2n2i−1−n = i ·2i−1.

Then,

2i−1

∑
j=0

f (2i, j) =
2i−1

∑
j=0

2i + j−gcd(2i, j),

= 2i · (2i −1)+
(2i)(2i −1)

2
− i ·2i−1 =

3
2
(
22i −2i)− i ·2i−1.

We compute the original expression:

N

∑
i=0

2i−1

∑
j=0

f (2i, j) =
N

∑
i=0

3
2
(
22i −2i)− i ·2i−1

=
(
22N+1 −3 ·2N +1

)
−
(
(N −1) ·2N +1

)
= 22N+1 − (N +2) ·2N .

Plugging in N = 30, we obtain 22·30+1 −32 ·230 = 261 −235 .

Problem 8. Suppose a3x3 − x2 + a1x− 7 = 0 is a cubic polynomial in x whose roots α,β ,γ are positive real
numbers satisfying

225α2

α2 +7
=

144β 2

β 2 +7
=

100γ2

γ2 +7
.

Find a1.

Proposed by Brian Yang

Solution:
77
15

.

By Vieta’s, 7(α + β + γ) = αβγ . Suppose α =
√

7 · tanA,β =
√

7 · tanB, where 0 < A,B < π

2 are uniquely
determined acute angles. Then, we have

γ√
7
=− 1√

7
· α +β

1− αβ

7

=− tanA+ tanB
1− tanA tanB

=− tan(A+B) = tanC
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where C = π −A−B. This implies A,B,C are the angles of an acute triangle. Now, if (0,1) ∋ t = sinA, then
cosA =

√
1− t2, so we have α√

7
= t√

1−t2 . Solving for t, we get t = α√
7+α2 . Similar formulas hold for B,C.

Therefore, by the law of sines, the condition

15α√
α2 +7

=
12β√
β 2 +7

=
10γ√
γ2 +7

says that A,B,C are the angles of a 4-5-6 acute triangle (where the sides of 4,5,6 are opposite A,B,C, respec-
tively). Using the law of cosines and the fact cos2 θ + sin2

θ = 1, we compute

A B C
cos 3

4
9
16

1
8

sin
√

7
4

5
√

7
16

3
√

7
8

tan
√

7
3

5
√

7
9 3

√
7

.

Hence, tanA tanB tanC = tanA+ tanB+ tanC = 35
√

7
9 . By Vieta’s, we obtain 1

a3
=
√

7 · 35
√

7
9 . Moreover, Vieta’s

also implies

a1

a3
= αβ +βγ + γα = 7(tanA tanB+ tanB tanC+ tanC tanA) = 7 · 7 ·77

27
.

Putting everything together, we get

a1 = 7 · 7 ·77
27

· 1√
7
· 9

35
√

7
=

77
15

.

Problem 9. Let ABCD be a convex, non-cyclic quadrilateral with E the intersection of its diagonals. Given
∠ABD+∠DAC = ∠CBD+∠DCA, AB = 10, BC = 15, AE = 7, and EC = 13, find BD.

Proposed by Brian Yang

Solution:
399

√
211

422
.

Let AD, BD, and CD intersect (ABC) again at A1, B1, and C1, respectively.

7



A

B

C

D

E
K1

A1B1

C1

K2

Hence, there are pairs of similar triangles △ABD ∼△B1A1D, △BCD ∼△C1B1D, and △CA1D ∼△AC1D, i.e.

AB
A1B1

=
DA
DB1

,
CA1

C1A
=

DC
DA

,
B1C1

BC
=

DB1

DC
=⇒ AB

A1B1
· CA1

C1A
· B1C1

BC
= 1

The angle condition in the problem is equivalent to ∡DBA−∡DCA = ∡CBD−∡CAD. Observe

∡DBA−∡DCA = ∡B1BA−∡C1CA = ∡B1CA−∡C1CA = ∡B1CC1

∡CBD−∡CAD = ∡CBB1 −∡CAA1 = ∡CAB1 −∡C1AA1 = ∡A1AB1,

so A1B1 = B1C1. Thus, AB
BC = C1A

CA1
= AD

DC , i.e. D lies on the B-Apollonius circle of △ABC, which we call ΓB.

Denote by K1 and K2 the feet of the interior and exterior bisectors of ∠ABC on AC, respectively. It is well-
known that K1,K2 ∈ ΓB (in fact K1K2 is a diameter of ΓB). By the angle bisector theorem, K2A = 40,AK1 = 8.
Thus, K2E = K2A+AE = 47,EK1 = AK1 −AE = 1.
Now, by Stewart’s Theorem,

AE ·EC ·AC+BE2 ·AC = AB2 ·EC+BC2 ·EA =⇒ BE =

√
211
2

.

By Power of a Point with respect to ΓB, BE ·ED = K2E ·EK1 = 47. Thus, ED = 94√
211

, so it follows

BD = BE +ED =

√
211
2

+
94√
211

=
399

√
211

422
.

Problem 10. Suppose that ξ ̸= 1 is a root of the polynomial f (x) = x167 −1. Compute∣∣∣∣∣ ∑
0<a<b<167

ξ
a2+b2

∣∣∣∣∣ .
8



In the above summation a,b are integers.

Proposed by Brian Yang

Solution: 3
√

798 .
Let p be a prime with p ≡ 7 (mod 8). Denote by Fp the field of order p (the set of all residues mod p) and
F∗

p = Fp \ {0} its subset of invertible elements (the set of all non-zero residues mod p). Suppose that ξ is a
primitive pth root of unity, and let z = ∑0≤a<p ξ a2

.
Lemma 1: |z|=√

p.
Proof 1: Note

zz =

(
∑

0≤a<p
ξ

a2

)(
∑

0≤a<p
ξ
−a2

)
= ∑

0≤a,b<p
ξ

a2−b2
= ∑

0≤a,b<p
ξ
(a−b)(a+b).

For any (r,s) ∈ F2
p, the system a−b ≡ r (mod p),a+b ≡ s (mod p) has the unique solution a = r+s

2 ,b = r−s
2

modulo p. In particular,

zz = ∑
0≤a,b<p

ξ
(a−b)(a+b) = ∑

0≤r,s<p
ξ

rs =
p

∑
r=0

p

∑
s=0

(ξ r)s.

When r = 0, ∑
p
s=0(ξ

r)s = ∑
p
s=0(1)

s = p. When r ̸= 0, ξ r is a nonreal root of xp − 1; hence, ∑
p
s=0(ξ

r)s is the
sum of the roots of xp −1 which equals 0. Thus, zz = p =⇒ |z|=√

p.
Lemma 2: z =±i

√
p.

Proof 2: Denote by Q ⊂ F∗
p the subset of nonzero quadratic resides mod p. For any t ∈ F∗

p, we have −
(

t
p

)
=(

−1
p

)(
t
p

)
=
(
−t
p

)
, in lieu of the fact

(
−1
p

)
= (−1)

p−1
2 = −1. In other words, exactly one of the two con-

gruences x2 ≡ t (mod p),x2 ≡ −t (mod p) is solvable. Furthermore, any solvable quadratic congruence
x2 ≡ t (mod p) has exactly two distinct solutions of the form x ≡ ±a (mod p) for some a ∈ F∗

p. It follows

∑0<a<p ξ a2
= 2 ·∑u∈Q ξ u, ∑0<a<p ξ−a2

= 2 ·∑u∈F∗
p\Q ξ u. Hence,

z+ z = ∑
0≤a<p

ξ
a2
+ ∑

0≤a<p
ξ
−a2

= 2+2 · ∑
u∈Q

ξ
u +2 · ∑

u∈F∗
p\Q

ξ
u = 2+2 · ∑

u∈F∗
p

ξ
u = 2−2 = 0.

Thus, z is pure imaginary, so z =±i
√

p.
Lemmas 1 and 2 derive the well-known basic properties of quadratic Gauss sums1. Now, we also wish to
evaluate the sum ∑0≤a<p ξ 2a2

. The following Lemma 3 answers this question.

Lemma 3: ∑0≤a<p ξ 2a2
= ∑0≤a<p ξ a2

.

Proof 3: Recall that
(

2
p

)
= (−1)

p2−1
8 = 1 =⇒ 2 ∈ Q (alternatively, in the special case p = 167, we have

(±13)2 ≡ 2 (mod p)). In particular, the permutation F∗
p → F∗

p,x 7→ 2x acts as a permutation on Q ⊂ F∗
p,

implying the conclusion.

1Determining the sign of z requires the exact value of ξ and is more difficult. Here is a useful reference for further
information on this topic: https://www.mast.queensu.ca/~murty/quadratic2.pdf.
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Returning to the original problem:

z2 =

(
∑

0≤a<p
ξ

a2

)2

= ∑
0≤a,b<p

ξ
a2+b2

= ∑
0≤a<p

ξ
2a2

+2 · ∑
0≤a<b<p

ξ
a2+b2

=⇒ ∑
0≤a<b<p

ξ
a2+b2

=
z2 −∑0≤a<p ξ 2a2

2
=

−p∓ i
√

p
2

;

∑
0<a<b<p

ξ
a2+b2

= ∑
0≤a<b<p

ξ
a2+b2 − ∑

0<b<p
ξ

b2
= ∑

0≤a<b<p
ξ

a2+b2 −

(
∑

0≤b<p
ξ

b2 −1

)

=⇒ ∑
0<a<b<p

ξ
a2+b2

=
−p∓ i

√
p

2
∓ i

√
p+1.

Hence, ∣∣∣∣∣ ∑
0<a<b<p

ξ
a2+b2

∣∣∣∣∣=
√( p

2
−1
)2

+

(
3
√

p
2

)2

=

√
(p+1)(p+4)

2
.

When p = 167, the above formula yields
√

168·171
2 = 3

√
798 .
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