
CHMMC 2020-2021

Team Round Solutions

1. A unit circle is centered at (0, 0) on the (x, y) plane. A regular hexagon passing through (1, 0)
is inscribed in the circle. Two points are randomly selected from the interior of the circle and
horizontal lines are drawn through them, dividing the hexagon into at most three pieces. The
probability that each piece contains exactly two of the hexagon’s original vertices can be written
as

2
(
mπ
n +

√
p
q

)2
π2

for positive integers m, n, p, and q such that m and n are relatively prime and p is squarefree.
Find m+ n+ p+ q.

Solution: 11

The line passing through the first point must be in between the “top” and “bottom” segments of
the hexagon. The total area in which we can choose this point from equals the area of the hexagon
plus the area of 4 60◦ circular segments. This is 2 unit equilateral triangles plus 4 60◦ circular sectors,

an area of 2 · (
√
3
4 + π

3 ). Hence, the probability that the line passing through the first point satisfies

the aforementioned condition is just
2·(

√
3

4
+π

3
)

π .

WLOG, assume that the line passing through the first point is below the horizontal long diagonal
of the hexagon. Then, the line passing through the second point must be in between the “top” segment
of the hexagon and the horizontal long diagonal. We see that the possible area to choose the second
point is half the area of the hexagon plus 2 60◦ circular segments. This is a unit equilateral triangle

plus 2 60◦ circular sectors, an area of (
√
3
4 + π

3 ). Hence, the probability that the line passing through

the second point satisfies the aforementioned condition is just

√
3

4
+π

3
π .

The overall probability of success is the product of the two probabilities, or
2·(

√
3
4
+π

3
)2

π2 . Hence, the

answer is 3 + 4 + 1 + 3 = 11 .

2. Find the smallest positive integer k such that there is exactly one prime number of the form kx+60
for the integers 0 ≤ x ≤ 10.

Solution: 17

First note that if there is a common factor d = gcd(k, 60), then d will divide kx + 60. Thus, we
want gcd(k, 60) = 1. Since 60 is divisible by 2, 3, 4, and 5 we start with k = 1 and then primes.

Similarly we also want x and 60 to be relatively prime. Therefore it is only necessary to check
x = 1, 7. One can compute

k = 1 −→ kx+ 60 = 61, 67.

k = 7 −→ kx+ 60 = 67, 109.

k = 11 −→ kx+ 60 = 71, 137.

k = 13 −→ kx+ 60 = 73, 151.

k = 17 −→ kx+ 60 = 77, 179.

For the first 4, we find two prime numbers each. However, for k = 17 we note that 77 is composite
while 179 is prime. Hence, k = 17 is the answer.
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3. For any nonnegative integer n, let S(n) be the sum of the digits of n. Let K be the number of
nonnegative integers n ≤ 1010 that satisfy the equation

S(n) = (S(S(n)))2.

Find the remainder when K is divided by 1000.

Solution: 632

Since n ≤ 1010, we have that S(n) ≤ 90. Testing possible perfect square values of S(n), we see
that the only possible values of S(n) that satisfy S(n) = (S(S(n)))2 are S(n) = 0, 1, 81. For S(n) = 0,
only n = 0 works. For S(n) = 1, the values n = 100, 101, . . . , 1010 work, a total of 11 cases. For
S(n) = 81, we want 10 digits, each of which is at most, to sum to 81. This is equivalent to a ball-
and-urn problem with 9 balls and 10 urns, where each urn represents a digits-place and k balls in an
urn represents a digit value of 9− k. The number of ways to put the balls into urns equals

(
9+10−1
10−1

)
.

Hence, the number of integers n is 12 +
(
18
9

)
; when divided by 1000, this yields 632 .

4. Select a random real number m from the interval (16 , 1). A track is in the shape of an equilateral
triangle of side length 50 feet. Ch, Hm, and Mc are all initially standing at one of the vertices
of the track. At the time t = 0, the three people simultaneously begin walking around the track
in clockwise direction. Ch, Hm, and Mc walk at constant rates of 2, 3, and 4 feet per second,
respectively. Let T be the set of all positive real numbers t0 satisfying the following criterion:

If we choose a random number t1 from the interval [0, t0], the probability that the three people are
on the same side of the track at the time t = t1 is precisely m.

The probability that |T | = 17 (i.e., T has precisely 17 elements) equals p
q , where p and q are

relatively prime positive integers. Find p+ q.

Solution: 10585

Denote Ch, Hm, and Mc by C, H, and M respectively. Label the sides of the triangle by 1, 2, 3 in
clockwise order.

Note that C is at side 1 at times [0, 25] ∪ [75, 100] ∪ [150, 175] ∪ · · · , H is at side 1 at times
[0, 503 ] ∪ [50, 50 + 50

3 ] ∪ [100, 100 + 50
3 ] ∪ [150, 150 + 50

3 ] ∪ · · · , and M is at side 1 at times [0, 504 ] ∪
[1504 ,

150
4 + 50

4 ]∪ [3004 ,
300
4 + 50

4 ]∪ [4504 ,
450
4 + 50

4 ]∪ [6004 ,
600
4 + 50

4 ]∪ · · · . So, C, H, and M are all at side 1
at times [150k, 150k + 25

2 ] for integers k ≥ 0, noting the pattern is periodic (mod 150) seconds.

Note that C is at side 2 at times [25, 50] ∪ [100, 125] ∪ [175, 200] ∪ · · · , H is at side 2 at times
[503 , 2·

50
3 ]∪[50+ 50

3 , 50+2· 503 ]∪[100+ 50
3 , 100+2· 503 ]∪[150+ 50

3 , 150+2· 503 ]∪· · · , and M is at side 2 at times
[504 , 2 ·

50
4 ]∪ [1504 + 50

4 ,
150
4 +2 · 504 ]∪ [3004 + 50

4 ,
300
4 +2 · 504 ]∪ [4504 + 50

4 ,
450
4 +2 · 504 ]∪ [6004 + 50

4 ,
600
4 +2 · 504 ]∪· · · .

We can check that C, H, M are never all at side 2, noting the pattern is periodic (mod 150) seconds.

Note that C is at side 3 at times [50, 75] ∪ [125, 150] ∪ [200, 225] ∪ · · · , H is at side 3 at times
[2 · 503 , 3 ·

50
3 ]∪ [50 + 2 · 503 , 50 + 3 · 503 ]∪ [100 + 2 · 503 , 100 + 3 · 503 ]∪ [150 + 2 · 503 , 150 + 3 · 503 ]∪· · · , and M is

at side 3 at times [2 · 504 , 3 ·
50
4 ]∪ [1504 + 2 · 504 ,

150
4 + 3 · 504 ]∪ [3004 + 2 · 504 ,

300
4 + 3 · 504 ]∪ [4504 + 2 · 504 ,

450
4 +

3 · 504 ]∪ [6004 + 2 · 504 ,
600
4 + 3 · 504 ]∪ · · · . So, C, H, and M are all at side 3 at times [150k− 25

2 , 150k] for
integers k ≥ 1, noting the pattern is periodic (mod 150) seconds.

If m ∈ ( 2(k+1)+1
12(k+1)+1 ,

2k+1
12k+1 ], then by a continuity argument, there is exactly one element of T in

the intervals (150(i − 1) + 25
2 , 150i − 25

2 ) for all i = 1, . . . , k + 1 and an element of T in the intervals
[16 ,

2i+1
12i+1 ] for all i = 1, . . . , k, and there are no other elements of T .

Hence, the probability that |T | = 17 equals the probability that m ∈ ( 2·9+1
12·9+1 ,

2·8+1
12·8+1 ], so the
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requested probability is(
17

97
− 19

109

)
/

(
5

6

)
=

6

5
· 17 · 109− 19 · 107

97 · 109
=

12

97 · 109
.

This computation is made easier by noting that (12(k + 1) + 1)(2k + 1) − (12k + 1)(2(k + 1) + 1) =
12− 2 = 10 in general. Thus, the answer is 10585 .

5. Thanos establishes 5 settlements on a remote planet, randomly choosing one of them to stay in,
and then he randomly builds a system of roads between these settlements such that each settlement
has exactly one outgoing (unidirectional) road to another settlement. Afterwards, the Avengers
randomly choose one of the 5 settlements to teleport to. Then, they (the Avengers) must use the
system of roads to travel from one settlement to another. The probability that the Avengers can
find Thanos can be written as m

n for relatively prime positive integers m and n. Find m+ n.

Solution: 263

The Avengers have a 1
5 chance of immediately finding Thanos. Otherwise, we can model the

system of roads as a random walk of maximum length 4 on the 5 vertices of a complete graph. In
each “step” of the random walk, we end the walk in success if the Avengers reach the vertex at which
Thanos resides (a 1

4 probability each time), and we end the walk in failure if the Avengers revisit a
vertex, as this implies the Avengers are stuck in a “loop” of directed roads where Thanos does not
exist. Otherwise, we continue the random walk.

Observe that step n has a 1
4 chance of success, an n−1

4 chance of failure, and a 4−n
4 chance of

continuation. Therefore, the chance of succeeding on step n can be given by

1

4
·
n−1∏
k=1

4− k
4

.

Thus, the overall probability that the Avengers can find Thanos is

1

5
+

4

5
· 1

4

 4∑
j=1

j−1∏
k=1

4− k
4

 =
103

160
.

Hence, the answer is 263 .

6. Suppose that

∞∏
n=1

1 + i cot
(

nπ
2n+1

)
1− i cot

(
nπ

2n+1

)


1
n

=

(
p

q

)iπ
,

where p and q are relatively prime positive integers. Find p+ q.

Note: for a complex number z = reiθ for reals r > 0, 0 ≤ θ < 2π, we define zn = rneiθn for all
positive reals n.

Solution: 5

Let α = p
q . Since 1+i cot

(
nπ

2n+1

)
and 1−i cot

(
nπ

2n+1

)
clearly have equal magnitude, their quotient

is in the form eiθ, where θ is the difference between their arguments. If we examine the right triangle

with leg lengths 1 and cot
(

nπ
2n+1

)
, we can indeed see that the measure of the non-right angle adjacent
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to the leg of length 1 is π
2(2n+1) , so arg

(
1 + i cot

(
nπ

2n+1

))
= π

2(2n+1) and arg
(

1− i cot
(

nπ
2n+1

))
=

− π
2(2n+1) . Thus, the desired result is

∞∏
n=1

(
e

iπ
2n+1

) 1
n

=
∞∏
n=1

e
iπ

n(2n+1) = eSiπ,

where

S =
1

1 · 3
+

1

2 · 5
+

1

3 · 7
+ · · · = 2

(
1

2
− 1

3
+

1

4
− 1

5
+ . . .

)
.

However, the alternating harmonic series 1− 1
2 + 1

3 −
1
4 + . . . converges to ln 2, so in fact

1

2
− 1

3
+

1

4
− 1

5
+ · · · = 1− ln 2 =⇒ S = 2− 2 ln 2.

Therefore,

eSiπ = e2iπ−2 ln (2)iπ = e−2 ln (2)iπ =

(
1

4

)iπ
=⇒ α =

1

4
.

Thus, the answer is 5 .

Remark: we can obtain other α that satisfy the specified equation by multiplying/dividing 1
4 by

e2, but those values of α are not rational.

7. For any positive integer n, let f(n) denote the sum of the positive integers k ≤ n such that k and
n are relatively prime. Let S be the sum of 1

f(m) over all positive integers m that are divisible by

at least one of 2, 3, or 5, and whose prime factors are only 2, 3, or 5. Then S = p
q for relatively

prime positive integers p and q. Find p+ q.

Solution: 7291

Remark: for any positive integer n > 1, where φ denotes the Euler Totient function,

f(n) =
∑

1≤x≤n,gcd(x,n)=1

x = φ(n) · n
2

since gcd(x, n) = 1 ⇐⇒ gcd(n − x, n) = 1. Let I denote the set of positive integers m that are
divisible by at least one of 2, 3, or 5, and whose prime factors are only 2, 3, or 5. Thus,

S =
∑
m∈I

1

f(m)
= 2

∑
m∈I

1

mφ(m)

Then, by the multiplicativity of φ on prime powers, we see that S = 2(−1 +Q(2)Q(3)Q(5)) where for
a prime p,

Q(p) =
1

φ(1) · 1
+

1

φ(p) · p
+

1

φ(p2) · p2
+ · · ·

For any k ≥ 1 we have pkφ(pk) = pk−1(p− 1)pk = p2k−1(p− 1), so

Q(p) = 1 +
1

p− 1
· 1/p

1− 1/p2
= 1 +

p

(p− 1)(p2 − 1)

Therefore,

S = 2

(
5

3
· 19

16
· 101

96
− 1

)
=

9595

482
− 2 =

4987

2304
.

The answer is 7291 .
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8. 15 ladies and 30 gentlemen attend a luxurious party. At the start of the party, each one of the
ladies shakes hands with a random gentleman. At the end of the party, each of the ladies shakes
hands with another random gentleman. A lady may shake hands with the same gentleman twice
(first at the start and then at the end of the party), and no two ladies shake hands with the same
gentleman at the same time.

Let m and n be relatively prime positive integers such that m
n is the probability that the collection

of ladies and gentlemen that shook hands at least once can be arranged in a single circle such that
each lady is directly adjacent to someone if and only if she shook hands with that person. Find
the remainder when m is divided by 10000.

Solution: 1401

Case 1: 15 gentlemen shake hands twice.

If we line up every lady with the gentleman she shook hands with at the start of the party,
then the number of ways the ladies could have shaken hands with gentlemen at the end of the party
describes the set of permutations of 15 gentlemen. In a given permutation of 15 gentlemen, every
n-cycle describes a circle formed by alternating n ladies and n gentlemen. Thus, the 15 ladies and 15
gentlemen can form a circle if and only if the described permutation of 15 gentlemen is a 15-cycle.
There are 14! 15 cycles and a total of 15! permutations, so the probability that the circle can be formed
in this case is 1

15 . The probability that this case occurs is 1(
30
15

) .

Case 2: 1 ≤ k ≤ 15, 15 + k gentlemen shake hands.

Once again, we line up every lady with the gentleman she shook hands with at the start of the
party. We may assume WLOG that the last k ladies shake hands at the end of the party with the
k gentlemen that did note shake hands at the start of the party. Consider the graph of 15 ladies
and 15 + k gentlemen such that two nodes are connected if and only if the corresponding lady and
gentleman shook hands. We call 2 ladies “linked” if and only if we can trace a path of connected
nodes between them. Observe that the 15 ladies and 15 + k gentlemen can form the desired circle
if and only if every lady is linked to one of the last k ladies. Then, the number of ways for this to
happen is a bijection to the stars and bars problem with 15− k distinct stars and k− 1 identical bars,
a total of (15− k)!

(
14
k−1
)

ways. The total number of ways the first 15− k ladies could have chosen the

15 available men (the ones which shook hands at the start of the party) is 15!
k! . Thus, we see that the

probability that the circle can be formed in this case is
(15−k)!

(
14
k−1
)
k!

15! = k
15 . The probability that this

case occurs, for each k, is

(
15
k

)(
15

15−k
)(

30
15

) .

Letting P be the desired probability, we see that

P =

∑15
n=0

n
15

(
15
n

)(
15

15−n
)

+ 1
15(

30
15

) =
1
2

(
30
15

)
+ 1

15(
30
15

) =
15
2

(
30
15

)
+ 1

15
(
30
15

)
by symmetry of n

15 terms and Vandermonde’s identity. We observe that 15
(
30
15

)
= 24 ·33 ·52 ·17·19·23·29

and 15
2

(
30
15

)
+ 1 = 23 · 33 · 52 · 17 · 19 · 23 · 29 + 1 so the numerator and denominator are clearly coprime.

Observe that 2 · 33 · 17 · 19 · 23 · 29 ≡ 14 (mod 100), so the remainder when 23 · 33 · 52 · 17 · 19 · 23 · 29 + 1
is divided by 10000 is 1401 .

9. Triangle ABC has circumcenter O and circumcircle ω. Let Aω be the point diametrically opposite
A on ω, and let H be the foot of the altitude from A onto BC. Let HB and HC be the reflections
of H over B and C, respectively. Point P is the intersection of line AωB and the perpendicular of
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BC at point HB, and point Q is the intersection of line AωC and the perpendicular of CB at point
HC . The circles ω1 and ω2 have the respective centers P and Q and respective radii PA and QA.

Suppose that ω, ω1, and ω2 intersect at another common point X. If AO =
√
105
5 and AX = 4,

then |AB−CA|2 can be written as m−n√p for positive integers m and n and squarefree positive
integer p. Find m+ n+ p.

Note: the reflection of a point P over another point Q 6= P is the point P ′ such that Q is the
midpoint of P and P ′.

Solution: 44

B

C

A

O

H
HC

HB

P

Q

Aω

X

Y

M

Since AAω is a diameter of ω, we see that AB ⊥ PAω and AC ⊥ QAω. Hence, B is the midpoint
of the chord in ω1 defined by line AB, and C is the midpoint of the chord in ω2 defined by line AC.
Consider the homothety H(A, 12) which sends P to P ′, Q to Q′, ω1 to γ1, and ω2 to γ2. Observe
that γ1 passes through point B, γ2 passes through point C, and γ1 and γ2 intersect at point Y the
midpoint of AX. Furthermore, since P lies on the reflection of line AH over point B, and Q lies on
the reflection of line AH over point C, observe that P ′B ⊥ BC and Q′C ⊥ CB. Thus, γ1 is tangent
to BC at point B, and γ2 is tangent to CB at point C. Thus, AY bisects BC at point M . By power
of a point,

MX ·MA = MB ·MC = MB2 = MY ·MA =⇒ MX = MY =
Y A

2
= 1.

We see that MB = MC =
√

3 and Y is the centroid of 4ABC. Furthermore, OY ⊥ AX, so applying

the Pythagorean Theorem on right 4OYX gives us OY =
√

105
52
− 22 =

√
5
5 . Apply the Pythagorean

Theorem again on 4OYM to obtain OM =
√

5
52

+ 1 =
√
30
5 . Note that OM is the perpendicular

bisector of BC. Thus, the distance from Y to OM is OY ·YM
OM =

√
1
6 , and the distance from Y to BC

is YM2

OM =
√

5
6 . By the Pythagorean Theorem,

BY =

√√√√(√3±
√

1

6

)2

+
5

6
, CY =

√√√√(√3∓
√

1

6

)2

+
5

6
.
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However, BC is tangent to γ1, γ2 and AM is a common secant of these two circles. This implies
that 4MBY ∼ 4MAB and 4MCY ∼ 4MAC, both of similitude ratio 1√

3
. Hence, we have that

|AB − CA|2 =
(√

3
)2 |BY − CY |2 = 24− 6

√
14. The answer is 44 .

10. Let ω be a nonreal 47th root of unity. Suppose that S is the set of polynomials of degree at most
46 and coefficients equal to either 0 or 1. Let N be the number of polynomials Q ∈ S such that

46∑
j=0

Q(ω2j)−Q(ωj)

ω4j + ω3j + ω2j + ωj + 1
= 47.

The prime factorization of N is pα1
1 pα2

2 . . . pαss where p1, . . . , ps are distinct primes and α1, α2, . . . , αs
are positive integers. Compute

∑s
j=1 pjαj .

Solution: 107

For a number n ∈ {0, 1, . . . , 46}, we see that

46∑
j=1

ωnj

ω4j + ω3j + ω2j + ωj + 1
=

46∑
j=1

ωnj(ωj − 1)

ω5j − 1
=

46∑
j=1

ωnj(ω95j − 1)

ω5j − 1
=

46∑
j=1

18∑
k=0

ω(5k+n)j .

Observe that
∑46

j=1 ω
(5k+n)j = 46 if 5k+n is a multiple of 47 (i.e., ω5k+n = 1) and

∑46
j=1 ω

(5k+n)j =
−1 otherwise (since the sum of all the nonreal roots of unity is −1). Since k varies from 0 to 18, we
see from inspection that the congruence 5k + n ≡ 0 (mod 47) has exactly one solution in k for n = 0
or n ≡ 2, 4 (mod 5) (call this Condition 1), and 5k+n ≡ 0 (mod 47) has no solutions in k for nonzero
n ≡ 1, 3, 0 (mod 5) (call this Condition 2). Thus,

46∑
j=0

ωnj

ω4j + ω3j + ω2j + ωj + 1
=

1

5
+

46∑
j=1

18∑
k=0

ω(5k+n)j =

{
141
5 if n satisfies Condition 1

−94
5 if n satisfies Condition 2

.

Remark that these formulas hold for when 0 ≤ n ≤ 46.

Denote f(n) = 2n if 0 ≤ n ≤ 23, and 2n − 47 if 24 ≤ n ≤ 46. Remark ω2nj = ωf(n)j for any
0 ≤ j ≤ 46. Then, if we let

Z(n) =
46∑
j=0

ωf(n)j − ωnj

ω4j + ω3j + ω2j + ωj + 1
,

we see that Z(n) = 47 if f(n) satisfies Condition 1 and n satisfies Condition 2, Z(n) = 0 if f(n) and
n satisfy the same of Condition 1 and 2, and Z(n) = −47 if f(n) satisfies Condition 2 and n satisfies
Condition 1. Testing each value of n, we see that

Z(n) =


47 n ≡ 4 (mod 5)

−47 n ≡ 1 (mod 5) for n ≤ 21, n ≡ 3 (mod 5) for n ≥ 28

0 otherwise

.

We have 9 values of n such that Z(n) = 47, 29 values of n such that Z(n) = 0, and 9 values of n
such that Z(n) = −47. Observe that polynomials Q ∈ S are just additive constructions of ωn terms.
Indeed, if we let an be the coefficient of xn in the expansion of Q(x), we see that

46∑
j=0

Q(ω2j)−Q(ωj)

ω4j + ω3j + ω2j + ωj + 1
=

∑
0≤n≤46 : an=1

Z(n).
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Thus, the problem reduces to finding the number of subsets K ⊆ {0, 1, . . . , 46} such that∑
n∈K

Z(n) = 47.

We can choose to include or not to include any n such that Z(n) = 0, giving us 229 options here. We
must choose exactly one additional n satisfying Z(n) = 47 than n satisfying Z(n) = −47, giving us∑8

j=0

(
9
j+1

)(
9
j

)
=
(
18
10

)
options by Vandermonde’s identity. Therefore, the total number of subsets is(

18
10

)
· 229 = 230 · 32 · 11 · 13 · 17, giving an answer of 107 .
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