
CHMMC 2021-2022

Team Round Solutions
Problem 1. Let ABC be a right triangle with hypotenuse AC and circumcenter O. Point E lies on AB such that
AE = 9,EB = 3; point F lies on BC such that BF = 6,FC = 2. Now suppose W , X , Y , and Z are the midpoints
of EB, BF , FO, and OE, respectively. Compute the area of quadrilateral WXY Z.

Solution: 12 .
For completeness, we provide the proof of the following well-known fact:
Lemma 1: Consider a convex quadrilateral ABCD. Let X ,Y,Z,W be the midpoints of AB,BC,CD,DA respec-
tively. Then [XY ZW ] = 1

2 [ABCD].
Proof: Put A1 = [ABD],A2 = [CDB]. By 4ABD ∼ 4AXW,4CDB ∼ 4CZY of ratio 1

2 , we have [AXW ] =
1
4 A1, [CZY ] = 1

4 A2, so [AXW ]+ [CZY ] = 1
4 [ABCD]. Likewise, [BY X ]+ [DWZ] = 1

4 [ABCD]. Hence [XY ZW ] =
1
2 [ABCD].
Lemma 1 implies that we just want to find

[XY ZW ] =
1
2
[EBFO] =

1
2
([OEB]+ [OFB]) =

1
2

(
1
2
·4 ·3+ 1

2
·6 ·6

)
= 12 .

Problem 2. A prefrosh is participating in Caltech’s “Rotation.” They must rank Caltech’s 8 houses, which are
Avery, Page, Lloyd, Venerable, Ricketts, Blacker, Dabney, and Fleming, each a distinct integer rating from 1 to
8 inclusive. The conditions are that the rating x they give to Fleming is at most the average rating y given to
Ricketts, Blacker, and Dabney, which is in turn at most the average rating z given to Avery, Page, Lloyd, and
Venerable. Moreover x,y,z are all integers. How many such rankings can the prefrosh provide?

Solution: 1296 .
Remark

3y+4z = 1+ · · ·+8− x = 36− x

If x≥ 5 then 31≥ 36− x≥ (3+4)5 = 35, contradiction. So 1≤ x≤ 4. Thus, one checks that the solutions for
(x,y,z) are (1,5,5),(3,3,6),(4,4,5).
For (x,y,z) = (1,5,5): we have that this holds iff the numbers {a,b,c} assigned to the houses corresponding to
y among {1, . . . ,8}\{x} sum to 15. We can see that there are 5 such ways:

{a,b,c}= {2,5,8},{2,6,7},{3,4,8},{3,5,7},{4,5,6}.

For (x,y,z) = (3,3,6): we can find 1 such way: {a,b,c}= {1,2,6}.
For (x,y,z) = (4,4,5): we can find 3 such ways: {a,b,c}= {1,3,8},{1,5,6},{2,3,7}.
Given a proper ranking of houses, there are 3! ways to permute the numbers assigned to the houses corre-
sponding to y, and there are 4! ways to permute the number assigned to the houses corresponding to z. These
permutations leave y,z unchanged. So in total there are (5+1+3) ·3! ·4! = 1296 such proper rankings.

Problem 3. Suppose a,b,c are complex numbers with a+ b+ c = 0,a2 + b2 + c2 = 0, and |a|, |b|, |c| ≤ 5.
Suppose further at least one of a,b,c have real and imaginary parts that are both integers. Find the number of
possibilities for such ordered triples (a,b,c).

Solution: 481 .
Note 2(ab+ bc+ ca) = (a+ b+ c)2− a2 + b2 + c2 = 0. Thus, by Vieta’s formulas, a,b,c are the roots of
p(t) = t3− k for some complex constant k. Hence, if a is a root of p(t), then ωa,ω2a are necessarily the other
two roots of p(t), where ω = e2πi/3 denotes a third root of unity.
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If one of a,b,c is 0, this forces a = b = c = 0, yielding 1 solution.
Otherwise, take z ∈ Z[i], |z| ≤ 5 (Z[i] denotes the subset of complex numbers with integral real and imaginary
parts). The multiplication by ω map acts as rotation by 120◦ about the complex origin. Noticing tan(120◦) =
−
√

3 is irrational, the following lemma implies ωz,ω2z /∈ Z[i].
Lemma 1: Let A,B be plane lattice points not at the origin O. Then, tan(∠AOB) is rational.
Proof 1: The angle determined by AO and the x-axis has rational tan, where we take infinity to be rational. The
same statement is true with the angle determined by BO and the x-axis. Thus, by the tangent angle addition
formula, tan(∠AOB) is rational.
It follows (a,b,c) is necessarily a permutation of (z,ωz,ω2z). There are 81 plane lattice points inside or on the
border of the circle centered at the origin of radius 5. This yields 80 choices of z, and thus 80 ·3! = 480 choices
of (a,b,c) in this case.
Hence, the answer is 480+1 = 481 .

Problem 4. How many ordered triples (a,b,c) of integers 1≤ a,b,c≤ 31 are there such that the remainder of
ab+bc+ ca divided by 31 equals 8?

Solution: 930 .
The above condition is equivalent to (a+ c)(b+ c)≡ c2 +8 (mod 31). Note 152 ≡ 8 (mod 31), so

( 8
31

)
= 1.

Since 31 is a prime ≡ 3 (mod 4), we have
(−8

31

)
=−1. Thus, c2 +8≡ 0 (mod 31) never holds. Moreover, the

equation xy≡ k (mod p) has p−1 solutions in integers (x,y) (mod p) for any prime p and k 6≡ 0 (mod p).
Thus, for every residue c (mod 31), there are 30 solutions (a+ c,b+ c) (and hence (a,b)) to (a+ c)(b+ c)≡
c2 +8 (mod 31). Therefore, the answer is 31 ·30 = 930 .

Problem 5. How many cubics in the form x3− ax2 +(a+ d)x− (a+ 2d) for integers a,d have roots that are
all non-negative integers?

Solution: 5 .
Let the roots be r,s, t which are all non-negative integers. Then by Vieta’s, r+s+t = a,rs+st+tr = a+d,rst =
a+2d ⇐⇒ rst + r+ s+ t = 2(rs+ st + tr). Consider the following two cases:
Case 1: One of r,s, t is 0: WLOG say r = 0. Then, it is necessary that 2st = s+ t, or equivalently (2s−1)(2t−
1) = 1. This means s = t = 1 or s = t = 0, yielding 2 different cubics.
Case 2: All of r,s, t are nonzero: Hence, r,s, t ≥ 1. WLOG r ≥ s≥ t. The above gives

rst < 2(rs+ st + tr) =⇒ 3
t
≥ 1

r
+

1
s
+

1
t
>

1
2

Also, since r+ s+ t ≤ rs+ st + tr, we have

2(rs+ st + tr)≤ rs+ st + tr+ rst =⇒ 1
r
+

1
s
+

1
t
≤ 1

Hence, t = 2,3,4,5. We enumerate the cases:
(1) t = 5: Then 5rs+ r+ s+5 = 2(rs+5r+5s), so 3rs−9r−9s+5 = 0, which is not possible (mod 3).
(2) t = 4: Then, 4rs+ r+ s+ 4 = 2(rs+ 4r+ 4s) =⇒ 4rs− 14r− 14s+ 8 = 0 =⇒ (2r− 7)(2s− 7) = 41.

Since r ≥ s, and (we can check) it is not possible for the factorization to be negative, we have 2r− 7 =
41,2s−7 = 1, so (r,s) = (24,4).

(3) t = 3: Then 3rs+ r+ s+3 = 2(rs+3r+3s) =⇒ rs−5r−5s =−3 =⇒ (r−5)(s−5) = 22. Since r≥ s,
and (we can check) it is not possible for the factorization to be negative, we have r− 5 = 22,s− 5 = 1,
whence (r,s) = (27,6), or r−5 = 11,s−5 = 2, whence (r,s) = (16,7).

(4) t = 2: Then 2rs+ r+ s+2 = 2(rs+2r+2s) =⇒ 3r+3s = 2, contradiction as r,s≥ t > 1.
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So this case gives 3 solutions.
In total, the answer is 5 , as all our solutions are distinct.

Problem 6. There is a unique degree-10 monic polynomial with integer coefficients f (x) such that

f

(
9

∑
j=0

10
√

2021 j

)
= 0.

Find the remainder when f (1) is divided by 1000.

Solution: 91 .

Put θ = 10
√

2021,α = ∑
9
j=0

10
√

2021 j = ∑
9
j=0 θ j. Observe by geometric series α(θ −1) = 2021−1 = 2020, so

α = 2020
θ−1 .

Note that θ is a root of the polynomial g1(x) = x10− 2021. We may transform the polynomial g1 as follows.
First, θ −1 is a root of

g2(x) = g1(x+1) = (x+1)10−2021 =−2020+
10

∑
j=1

(
10
j

)
x j.

Then, 1
θ−1 is a root of

g3(x) =−x10g2

(
1
x

)
= 2020x10−

10

∑
j=1

(
10
j

)
x10− j

Finally, α = 2020
θ−1 is a root of the monic

f (x) = 20209g3

( x
2020

)
= x10−

10

∑
j=1

(
10
j

)
2020 j−1x10− j =

2020x10 +1−∑
10
j=0
(10

j

)
2020 jx10− j

2020
.

Noting the fact ∑
10
j=0
(10

j

)
2020 jx10− j = (2020+ x)10, we deduce

f (1) =
2021−202110

2020
=−2021(1+2021+20212)(1+20213 +20216)

=⇒ f (1)≡ 91 (mod 1000).

Remark: f (x) is necessarily unique, as it is in fact the minimal polynomial of α over Q[x].

Problem 7. Let ABC be a triangle with AB = 5, BC = 6, and CA = 7. Denote Γ the incircle of ABC; let I be
the center of Γ. The circumcircle of BIC intersects Γ at X1 and X2. The circumcircle of CIA intersects Γ at Y1
and Y2. The circumcircle of AIB intersects Γ at Z1 and Z2. The area of the triangle determined by X1X2, Y1Y2,
and Z1Z2 equals m

√
p

n for positive integers m, n, and p, where m and n are relatively prime and p is squarefree.
Compute m+n+ p.

Solution: 53 .
Let D, E, and F be the points at which Γ touches BC, CA, and AB respectively. Denote D′ = AI ∩EF , E ′ =
BI∩FD, and F ′ =CI∩DE, as shown below.
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A

B CD

E

F
I

D′

E ′
F ′

Γ

Suppose X =Y1Y2∩Z1Z2 and similarly define Y,Z. Note D′E ·D′F = D′I ·D′A, as AEIF is cyclic, which means
D′ is on the radical axis of Γ and (AIB) and also on the radical axis of Γ and (AIC). Hence D′ lies on Y1Y2 and
Z1Z2. This means D′ = X , so X = AI∩EF , which is the midpoint of EF . We have similar results for Y,Z. Since
4D′E ′F ′ is the medial triangle of4DEF , the requested answer is 1

4 [DEF ].

By Heron’s formula, [ABC] = 6
√

6. Furthermore, AE = AF = 3, BF = BD = 2, and CD = CE = 4. Hence,
[AEF ] = 3

7 ·
3
5 · [ABC]; similar formulas apply for [BFD] and [CDE]. Therefore,

[DEF ] = [ABC]− [AEF ]− [BFD]− [CDE]

= [ABC]

(
1− 3

7
· 3

5
− 2

5
· 2

6
− 4

6
· 4

7

)
=

48
√

6
35

.

Thus, 1
4 [DEF ] = 12

√
6

35 . The answer is 53 .
Remark: the points X ,Y,Z as above may alternatively be characterized via inversion I around Γ. Under
I , points X1,X2,Y1,Y2,Z1,Z2 are held fixed, so I : (BIC) 7→ X1X2,(CIA) 7→ Y1Y2,(AIB) 7→ Z1Z2. Moreover,
I : A 7→D′,B 7→E ′,C 7→F ′, so in fact E ′F ′=X1X2, F ′D′=Y1Y2, and D′E ′= Z1Z2. Thus, the triangle described
by lines X1X2, Y1Y2, and Z1Z2 is4D′E ′F ′.

Problem 8. Depei is imprisoned by an evil wizard and is coerced to play the following game. Every turn,
Depei flips a fair coin. Then, the following events occur in this order:

• The wizard computes the difference between the total number of heads and the total number of tails Depei
has flipped. If that number is greater than or equal to 4 or less than or equal to−3, then Depei is vaporized
by the wizard.

• The wizard determines if Depei has flipped at least 10 heads or at least 10 tails. If so, then the wizard
releases Depei from the prison.

The probability that Depei is released by the evil wizard equals m
2k , where m,k are positive integers. Compute

m+ k.

Solution: 27184 .
After 16 consecutive coin flips, Depei wins the game in (and only in) the following three conditions:
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• He reaches 9 heads and 7 tails.
• He reaches 8 heads and 8 tails.
• He reaches 7 heads and 9 tails and immediately flips heads thereafter.

In what follows, encode the sequence of coin flips by a north-east lattice paths on Z2 starting from (0,0),
where a flip of heads indicates a unit east and a flip of tails indicates a unit north. We call any north-east
lattice path (0,0)→ (x1,y1) that does not touch the lines y = x−4,y = x+3 proper. Denote by S(x1,y1) be the
number of proper lattice paths (0,0)→ (x1,y1). To this end, we need to calculate S(9,7),S(8,8),S(7,9). We will
use complementary counting.
Any lattice path (0,0)→ (9,7) touching y = x− 4 has a unique first touch-point. By reflecting the part of
the lattice path after this first touch-point, one obtains a lattice path (0,0)→ (11,5). Indeed, the collection
of lattice paths (0,0)→ (9,7) touching y = x− 4 bijects to the collection of lattice paths (0,0)→ (11,5) via
this reflection. There are

(16
5

)
such paths. Similarly, a lattice path (0,0)→ (9,7) touching y = x+ 3 has a

unique first touch-point, and reflecting the part of the lattice path after the first touch-point yields a lattice path
(0,0)→ (4,12). The collection of lattice paths (0,0)→ (9,8) touching y = x+ 3 bijects to the collection of
lattice paths (0,0)→ (4,12), and there are

(16
4

)
such paths.

We must also count the number of lattice paths (0,0)→ (9,7) that touch both lines y = x−4,y = x+3. Order
the touch-points of such a lattice path with the two lines in the obvious way; notice that its touch-points with
the line y = x−4 must either precede or succeed all its touch-points with the line y = x+3. For instance, the
lattice path cannot touch y = x−4, touch y = x+3, then touch y = x−4.
To this end, consider the collection of lattice paths (0,0)→ (9,7) that has some touch-point of y = x−4 after
some touch-point of y = x+3. The line y = x−4 reflected over y = x+3 is the line y = x+10. Thus, the above
collection of lattice paths are in one-to-one correspondence with the collection of lattice paths (0,0)→ (4,12)
touching y = x+10, which in turn biject, via reflection, to the collection of lattice paths (0,0)→ (2,14). There
are
(16

2

)
such paths. By a similar argument, there is clearly 1 lattice path (0,0)→ (9,7) that has some touch-

point of y = x+ 3 after some touch-point of y = x− 4. This covers all cases of lattice paths (0,0)→ (9,7)
touching at least one of the two lines.
We may apply a similar argument to count the lattice paths (0,0)→ (8,8) and (0,0)→ (7,9) touching at least
one of the two lines. By complementary counting and PIE we have

S(9,7) =
(

16
7

)
−
(

16
5

)
−
(

16
4

)
+

(
16
2

)
+1

S(8,8) =
(

16
8

)
−
(

16
5

)
−
(

16
4

)
+

(
16
1

)
+

(
16
1

)
S(7,9) =

(
16
7

)
−
(

16
6

)
−
(

16
3

)
+

(
16
2

)
+1

and the probability of Depei winning is therefore

1
216 ·

(
S(9,7)+S(8,8)+

S(7,9)
2

)
=

27167
217

which gives an answer of 27184 .

Problem 9. Find the largest prime divisor of

30

∑
n=3

((n
3

)
2

)
.

Solution: 431 .

5



Note

En :=
((n

3

)
2

)
equals the number of ways to pick two distinct 3-element subsets A,B⊂ {1, . . . ,n}. The union A∪B describes
either a 4-element, 5-element, or a 6-element subset of {1, . . . ,n}.
(1) For any 4-element set {a,b,c,d}, any of its 6 unordered pairs of 3-element subsets cover {a,b,c,d}.
(2) For any 3-element subset A ⊂ {a,b,c,d,e}, there are exactly three choices of another 3-element subset

B ⊂ {a,b,c,d,e} such that A∪B = {a,b,c,d,e}. This counts 10 · 3 = 30 pairs of 3-element subsets of
{a,b,c,d,e}, where each unordered pair is counted exactly twice. Thus, for any 5-element set {a,b,c,d,e},
there are 15 unordered pairs of 3-element subsets that cover {a,b,c,d,e}.

(3) For any 3-element subset A ⊂ {a,b,c,d,e, f}, there is exactly one choice of another 3-element subset
B ⊂ {a,b,c,d,e, f} such that A∪ B = {a,b,c,d,e, f}. Since there are

(6
3

)
= 20 3-element subsets of

{a,b,c,d,e, f}, there are 10 unordered pairs of 3-element subsets of that cover {a,b,c,d,e, f}.
It follows that

En = 6
(

n
4

)
+15

(
n
5

)
+10

(
n
6

)
and so by the hockey stick and Pascal identities

30

∑
n=3

En =
30

∑
n=3

6
(

n
4

)
+15

(
n
5

)
+10

(
n
6

)
= 6
(

31
5

)
+15

(
31
6

)
+10

(
31
7

)
= 6
(

33
7

)
+3
(

32
7

)
+

(
31
7

)
.

With some arithmetic this simplifies readily to 32 ·11 ·29 ·31 ·431, so the answer is 431 .

Problem 10. In triangle ABC, let O be the circumcenter. The incircle of ABC is tangent to BC, CA, and AB at
points D, E, and F , respectively. Let G be the centroid of triangle DEF . Suppose the inradius and circumradius
of ABC is 3 and 8, respectively. Over all such triangles ABC, pick one that maximizes the area of triangle AGO.
If we write AG2 = m

n for relatively prime positive integers m and n, then find m.

Solution: 337 .
We will show AG depends only on the inradius and circumradius of 4ABC. Let X , Y , and Z be the feet of the
D-, E-, and F-altitudes of4DEF on EF , FD, and DE, as shown below.

O

I

A

C

B

F

E
D

G

H

Z

YX
N

L
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Note ]FXY =]EDF =]EFA =]XFA =⇒ XY ‖ AB. Similarly, Y Z ‖ BC and ZX ‖CA. Hence,4XY Z and
4ABC are homothetic with center L = AX ∩BY ∩CZ. Denote H and N the orthocenter and nine-point center
of4DEF , respectively. Note H and N is also the incenter and circumcenter of the orthic4XY Z, respectively.
Since I is the incenter of4ABC, L,H, I are collinear by homothety. Likewise, O is the circumcenter of4ABC,
so L,N,O are collinear by homothety. Finally, I is also the circumcenter of 4DEF , so IH is the Euler line
of 4DEF . Hence, I,H,N,G are collinear. Combining these three collinearities shows L,H,N,G, I,O are all
collinear.
Note (XY Z) is the nine-point circle of 4DEF ; hence, the radius of (XY Z) is 3

2 —half the inradius r = 3 of
4ABC, or the radius of (DEF). Since the circumradius of 4ABC is R = 8, the ratio of homothety between

4XY Z and4ABC is
3
2
8 = 3

16 . Assume HI = LI−LH = 78x for some x > 0. With the well-known properties of
the Euler line and the aforementioned homothety we compute

3LI = 16LH =⇒ LH = 18x, LI = 96x,

HN = NI =
HI
2

= 39x =⇒ LN = 57x,

3LO = 16LN =⇒ LO = 304x =⇒ IO = LO−LI = 208x,

3GI = HI =⇒ GI = 26x =⇒ GO = IO+GI = 234x.

Thus,
GO
IO

=
234x
208x

=
9
8
.

By Euler’s Theorem, IO =
√

R(R−2r) = 4. Thus, GO = 9
8 · IO = 9

2 . To maximize the area of4AGO, we must
maximize the length of the A-altitude by “positioning” A on (ABC) such that AO⊥OG—such a4ABC clearly
exists. Hence, AG2 = AO2 +OG2 = 64+ 81

4 = 337
4 ; the answer is 337 .
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