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1. The monic polynomial f has rational coefficients and is irreducible over the rational numbers. If
f
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)

= 0, compute f
(
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2
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. (A polynomial is monic if its leading coefficient is 1. A
polynomial is irreducible over the rational numbers if it cannot be expressed as a product of two polynomi-
als with rational coefficients of positive degree. For example, x2−2 is irreducible, but x2−1 = (x+1)(x−1)
is not.)

Solution: Let x =
√

5+
√

2. Then x2 = 5+2+2
√

10, so (x2−7)2−40 = 0. Thus f(x) = (x2−7)2−40 is
a monic polynomial such that f(

√
5+
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2) = 0. One can notice that if y =
√

5−
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2, then y2 = 7−2
√

10,
so 0 = (y2−7)2−40 = f(y). Thus f(

√
5−
√

2) = 0, and so f(f(
√

5−
√

2)) = f(0) = (02−7)2−40 = 9 .

There are a several ways to check that f is irreducible. If we could factor f as a product of polynomials
of positive degree with rational coefficients, then one of the factors would be a linear or quadratic
polynomial. We can notice that the four roots of f are
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Each of these roots is irrational, so it can’t be the root of a linear polynomial with rational coefficients.
It is also not hard to check that none of these roots are roots of a quadratic polynomial with rational
coefficients, so we get a contradiction.

2. In the following diagram, points E, F , G, H, I, and J lie on a circle. The triangle ABC has side lengths
AB = 6, BC = 7, and CA = 9. The three chords have lengths EF = 12, GH = 15, and IJ = 16.
Compute 6 ·AE + 7 ·BG + 9 · CI.
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Solution: We use the Power of a Point Theorem three times at A, B, and C to obtain the equations
AE · AF = AI · AJ , BG · BH = BE · BF , and CI · CJ = CG · CH. Since we know the lengths of the
chords, we can rewrite these equations just in terms of AE, BG, and CI:

AE(12−AE) = (9 + CI)(7− CI)
BG(15−BG) = (6 + AE)(6−AE)
CI(16− CI) = (7 + BG)(8−BG)

Adding these three equations together and simplifying, we find that

12AE + 15BG + 16CI − (AE)2 − (BG)2 − (CI)2 = 155− 2CI + BG− (AE)2 − (BG)2 − (CI)2

We conclude that 12AE + 14BG + 18CI = 155, so 6AE + 7BG + 9CI =
155
2

.



3. Compute the number of ways of tiling the 2 × 10 grid below with the three tiles shown. There is an
infinite supply of each tile, and rotating or reflecting the tiles is not allowed.

Solution: Call the three tiles a Γ-tile, an I-tile, and a J-tile, respectively. It is easy to see that each
Γ-tile must be paired with a J-tile to create a 2× 3 rectangle. Thus we’d like to tile a 2× 10 rectangle
with 2 × 3 rectangles and 2 × 1 rectangles. We can therefore reduce the problem to tiling a 1 × 10
rectangle with 1× 3 rectangles and 1× 1 squares.

We can compute the number of ways to tile this rectangle using recursion. Let Tn be the number of
tiling a 1× n rectangle with 1× 3 and 1× 1 tiles. We can tile a 1× n rectangle by first placing either a
1× 1 or a 1× 3 tile on the left. If we place a 1× 1 tile, then the number of ways of tiling the remaining
n − 1 squares is Tn−1. If we place a 1 × 3 tile, then the number of ways of tiling the remaining n − 3
squares is Tn−3. Thus Tn = Tn−1 + Tn−3. Using T0 = T1 = T2 = 1, we can use this recursive formula to
compute Tn:

n 0 1 2 3 4 5 6 7 8 9 10
Tn 1 1 1 2 3 4 6 9 13 19 28

Thus there are 28 ways of tiling the rectangle.

4. Compute the number of positive divisors of 2010.

Solution: We can factor 2010 = 2 · 3 · 5 · 67. A divisor of 2010 is the product of a subset of {2, 3, 5, 67}.
There are 24 = 16 such subsets, so 2010 has 16 divisors.
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