Writer: Yasha Berchenko-Kogan

1. The monic polynomial f has rational coefficients and is irreducible over the rational numbers. If $f\left(\sqrt{5}+\sqrt{2}\right)=0$, compute $f\left(f\left(\sqrt{5}-\sqrt{2}\right)\right)$. (A polynomial is monic if its leading coefficient is 1. A polynomial is irreducible over the rational numbers if it cannot be expressed as a product of two polynomials with rational coefficients of positive degree. For example, x^2-2 is irreducible, but $x^2-1=(x+1)(x-1)$ is not.)

Solution: Let $x = \sqrt{5} + \sqrt{2}$. Then $x^2 = 5 + 2 + 2\sqrt{10}$, so $(x^2 - 7)^2 - 40 = 0$. Thus $f(x) = (x^2 - 7)^2 - 40$ is a monic polynomial such that $f(\sqrt{5} + \sqrt{2}) = 0$. One can notice that if $y = \sqrt{5} - \sqrt{2}$, then $y^2 = 7 - 2\sqrt{10}$, so $0 = (y^2 - 7)^2 - 40 = f(y)$. Thus $f(\sqrt{5} - \sqrt{2}) = 0$, and so $f(f(\sqrt{5} - \sqrt{2})) = f(0) = (0^2 - 7)^2 - 40 = \boxed{9}$.

There are a several ways to check that f is irreducible. If we could factor f as a product of polynomials of positive degree with rational coefficients, then one of the factors would be a linear or quadratic polynomial. We can notice that the four roots of f are $\sqrt{5} + \sqrt{2}$, $\sqrt{5} - \sqrt{2}$, $-\sqrt{5} + \sqrt{2}$, and $-\sqrt{5} - \sqrt{2}$. Each of these roots is irrational, so it can't be the root of a linear polynomial with rational coefficients. It is also not hard to check that none of these roots are roots of a quadratic polynomial with rational coefficients, so we get a contradiction.

2. In the following diagram, points E, F, G, H, I, and J lie on a circle. The triangle ABC has side lengths AB=6, BC=7, and CA=9. The three chords have lengths EF=12, GH=15, and IJ=16. Compute $6 \cdot AE + 7 \cdot BG + 9 \cdot CI$.

Solution: We use the Power of a Point Theorem three times at A, B, and C to obtain the equations $AE \cdot AF = AI \cdot AJ$, $BG \cdot BH = BE \cdot BF$, and $CI \cdot CJ = CG \cdot CH$. Since we know the lengths of the chords, we can rewrite these equations just in terms of AE, BG, and CI:

$$AE(12 - AE) = (9 + CI)(7 - CI)$$

 $BG(15 - BG) = (6 + AE)(6 - AE)$
 $CI(16 - CI) = (7 + BG)(8 - BG)$

Adding these three equations together and simplifying, we find that

$$12AE + 15BG + 16CI - (AE)^{2} - (BG)^{2} - (CI)^{2} = 155 - 2CI + BG - (AE)^{2} - (BG)^{2} - (CI)^{2}$$

We conclude that
$$12AE + 14BG + 18CI = 155$$
, so $6AE + 7BG + 9CI = \boxed{\frac{155}{2}}$

3. Compute the number of ways of tiling the 2×10 grid below with the three tiles shown. There is an infinite supply of each tile, and rotating or reflecting the tiles is not allowed.

Solution: Call the three tiles a Γ -tile, an I-tile, and a J-tile, respectively. It is easy to see that each Γ -tile must be paired with a J-tile to create a 2×3 rectangle. Thus we'd like to tile a 2×10 rectangle with 2×3 rectangles and 2×1 rectangles. We can therefore reduce the problem to tiling a 1×10 rectangle with 1×3 rectangles and 1×1 squares.

We can compute the number of ways to tile this rectangle using recursion. Let T_n be the number of tiling a $1 \times n$ rectangle with 1×3 and 1×1 tiles. We can tile a $1 \times n$ rectangle by first placing either a 1×1 or a 1×3 tile on the left. If we place a 1×1 tile, then the number of ways of tiling the remaining n-1 squares is T_{n-1} . If we place a 1×3 tile, then the number of ways of tiling the remaining n-3 squares is T_{n-3} . Thus $T_n = T_{n-1} + T_{n-3}$. Using $T_0 = T_1 = T_2 = 1$, we can use this recursive formula to compute T_n :

n	0	1	2	3	4	5	6	7	8	9	10
T_n	1	1	1	2	3	4	6	9	13	19	28

Thus there are 28 ways of tiling the rectangle.

4. Compute the number of positive divisors of 2010.

Solution: We can factor $2010 = 2 \cdot 3 \cdot 5 \cdot 67$. A divisor of 2010 is the product of a subset of $\{2, 3, 5, 67\}$. There are $2^4 = 16$ such subsets, so 2010 has 16 divisors.