

CHMMC 2023 Integration Bee Qualification Test Solutions

Problem 1. $\int_{0}^{8} 5 \cdot x^{\frac{2}{3}} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: 96 .
This is a simple use of the power rule for integrals.

$$
\int_{0}^{8} 5 \cdot x^{\frac{2}{3}} \mathrm{dx}=\left.\frac{5 \cdot x^{\frac{2}{3}+1}}{\frac{2}{3}+1}\right|_{0} ^{8}=\left.3 x^{\frac{5}{3}}\right|_{0} ^{8}=3 \cdot(8)^{\frac{5}{3}}-3 \cdot(0)^{\frac{5}{3}}=3 \cdot(2)^{5}-0=3 \cdot 32=96
$$

Problem 2. $\int_{0}^{12} \frac{1}{(x-16) \ln 2} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: -2 .
We can utilize regular integration properties as follows.

$$
\int_{0}^{12} \frac{1}{(x-16) \cdot \ln (2)} \mathrm{dx}=\left.\frac{\ln (|x-16|)}{\ln (2)}\right|_{0} ^{12}
$$

Evaluating, we have the following.

$$
\left.\frac{\ln (|x-16|)}{\ln (2)}\right|_{0} ^{12}=\frac{\ln (|12-16|)}{\ln (2)}-\frac{\ln (|0-16|)}{\ln (2)}=\frac{\ln (4)}{\ln (2)}-\frac{\ln (16)}{\ln (2)}
$$

We can use logarithm rules to prove the fact that $\ln \left(2^{a}\right)=a \ln (2)$, and simplify as follows.

$$
\frac{\ln \left(2^{2}\right)}{\ln (2)}-\frac{\ln \left(2^{4}\right)}{\ln (2)}=\frac{2 \ln (2)}{\ln (2)}-\frac{4 \ln (2)}{\ln (2)}=2-4=-2
$$

Problem 3. $\int_{-20}^{20} 20-|x| \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: 400
This integral lends itself to a more geometric approach, in that the integrand can be decomposed into two triangles. Specifically, we have that one of the triangles is sloping upward with $m=1$ on the interval to $[-20,0]$, and one of the triangles is sloping downward with $m=-1$ on the interval to $[0,20]$.

Therefore, we have two triangles, one on each sub-interval. Each of the triangles has a base of 20 since the sub-interval lengths are each 20 , and height 20 since the y-intercept of the lines mentioned above is 20 . Thus, adding the areas of both of these triangles, we have the following.

$$
\frac{400}{2}+\frac{400}{2}=400
$$

The calculus-based approach is shown as follows.

$$
\begin{gathered}
\int_{-20}^{20} 20-|x| \mathrm{dx}=\int_{-20}^{0}(20+x) \mathrm{dx}+\int_{0}^{20}(20-x) \mathrm{dx} \\
\int_{-20}^{0}(20+x) \mathrm{dx}=\left.\left(20 x+\frac{x^{2}}{2}\right)\right|_{-20} ^{0}=200 \\
\int_{0}^{20}(20-x) \mathrm{dx}=\left.\left(20 x-\frac{x^{2}}{2}\right)\right|_{0} ^{20}=200 \\
\int_{-20}^{20} 20-|x| \mathrm{dx}=200+200=400
\end{gathered}
$$

Problem 4. $\int_{1}^{\infty} \frac{1}{\sqrt{x}(1+x)} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: $\frac{\pi}{2}$.
We seek to remove the \sqrt{t}, so we split the fraction to set up the u-substitution.

$$
\int_{1}^{\infty} \frac{1}{\sqrt{t}(1+t)} \mathrm{dt}=\int_{1}^{\infty} \frac{2}{2 \sqrt{t}(1+t)} \mathrm{dt}=\int_{1}^{\infty} \frac{1}{2 \sqrt{t}} \cdot \frac{2}{1+t} \mathrm{dt}
$$

Performing the u-substitution, we now have a much more recognizable integral.

$$
\begin{gathered}
\int_{1}^{\infty} \frac{1}{2 \sqrt{t}} \cdot \frac{2}{1+(\sqrt{t})^{2}} \mathrm{dt} \underset{u=\sqrt{t}}{\Longrightarrow} \int_{1}^{\infty} \frac{2}{1+u^{2}} \mathrm{du}=\left.2 \arctan (u)\right|_{1} ^{\infty} \\
\left.2 \arctan (u)\right|_{1} ^{\infty}=2 \arctan (\infty)-2 \arctan (1)=2 \cdot\left(\frac{\pi}{2}\right)-2 \cdot\left(\frac{\pi}{4}\right)=\frac{\pi}{2}
\end{gathered}
$$

Problem 5. $\int_{-1}^{1} \frac{1}{\sqrt{4-x^{2}}} \mathrm{dx}$
Proposed by Brian Yang
Solution: $\frac{\pi}{3}$.
With a u-substitution $u=\frac{x}{2}$, which implies $\mathrm{d} u=\frac{\mathrm{d} x}{2}$, we have the following.

$$
\int_{-1}^{1} \frac{1}{\sqrt{4-x^{2}}} \mathrm{~d} x=\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{2}{\sqrt{4-4 u^{2}}} \mathrm{~d} u=\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-u^{2}}} \mathrm{~d} u
$$

The anti-derivative of the integrand is the $\arcsin (x)$ function, so we compute as follows.

$$
\int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{1}{\sqrt{1-u^{2}}} \mathrm{~d} u=\arcsin \left(\frac{1}{2}\right)-\arcsin \left(-\frac{1}{2}\right)=\frac{\pi}{6}-\left(-\frac{\pi}{6}\right)=\frac{\pi}{3}
$$

Problem 6. $\int_{0}^{2}\left(x^{2}-1\right) \cdot\left(x^{3}-3 x\right)^{\frac{4}{3}} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: $\frac{2^{\frac{7}{3}}}{7}$.
We recognize that this is a u-substitution, with $u=x^{3}-3 x$ and $\mathrm{du}=3 x^{2}-3 \mathrm{dx}=3\left(x^{2}-1\right) \mathrm{dx}$. Thus, we have the following upon changing the bounds.

$$
\int_{0}^{2}\left(x^{2}-1\right) \cdot\left(x^{3}-3 x\right)^{\frac{4}{3}} \mathrm{dx} \underbrace{\Longrightarrow}_{u=x^{3}-3 x} \int_{0}^{2} \frac{1}{3} \cdot(u)^{\frac{4}{3}} \mathrm{du}
$$

This is a simple use of the power rule for integrals.

$$
\int_{0}^{2} \frac{1}{3} \cdot(u)^{\frac{4}{3}} \mathrm{du}=\left.\frac{1}{3} \cdot \frac{u^{\frac{4}{3}+1}}{\frac{4}{3}+1}\right|_{0} ^{2}=\left.\frac{1}{7} u^{\frac{7}{3}}\right|_{0} ^{2}=\frac{2^{\frac{7}{3}}}{7}
$$

Problem 7. $\int_{1}^{2} \frac{2 x^{3}-1}{x^{4}+x} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: $\ln (9 / 4)$ or $2 \cdot \ln (3 / 2)$
To induce a u-substitution, we consider dividing by x^{2} in the numerator and denominator, we have the following.

$$
\int_{1}^{2} \frac{2 x^{3}-1}{x^{4}+x} \mathrm{dx}=\int_{1}^{2} \frac{2 x-\frac{1}{x^{2}}}{x^{2}+\frac{1}{x}}
$$

We now note that the numerator is simply the derivative of the denominator, as follows. Thus, we consider the u-substitution of the denominator $\left(x^{2}+1 / x\right)$. This would change the bounds as follows.

$$
u=1^{2}+\frac{1}{1}=2 \quad u=2^{2}+\frac{1}{2}=\frac{9}{2}
$$

Thus, the new integral becomes the following.

$$
\int_{1}^{2} \frac{2 x-\frac{1}{x^{2}}}{x^{2}+\frac{1}{x}} \mathrm{dx}=\int_{2}^{\frac{9}{2}} \frac{\mathrm{du}}{u}=\left.\ln (u)\right|_{2} ^{\frac{9}{2}}=\ln \left(\frac{9}{2}\right)-\ln (2)=\ln \left(\frac{9}{4}\right)=\ln \left(\frac{3^{2}}{2^{2}}\right)=2 \cdot \ln \left(\frac{3}{2}\right)
$$

Problem 8. $\int_{0}^{2024} x-\lfloor x\rfloor \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: 1012

We note that on the interval $[k, k+1)$, we observe that $\{x\}$ behaves like $y=x$. Thus, we split the integral into intervals of length 1 as follows. Note that $x-k$ is the line that is equivalent to $\{x\}$ on the designated interval.

$$
\int_{0}^{2024}\{x\} \mathrm{dx}=\sum_{k=0}^{2023} \int_{k}^{k+1}(x-k) \mathrm{dx}
$$

Evaluating the integral, we have the following.

$$
\int_{k}^{k+1}(x-k) \mathrm{dx} \underset{u=x-k}{\Longrightarrow} \int_{0}^{1} x \mathrm{dx}=\left.\frac{x^{2}}{2}\right|_{0} ^{1}=\frac{1^{2}}{2}-\frac{0^{2}}{2}=\frac{1}{2}
$$

Substituting this into our summation, we have the following.

$$
\sum_{k=0}^{2023} \int_{k}^{k+1}(x-k) \mathrm{dx}=\sum_{k=0}^{2023} \frac{1}{2}=\frac{1}{2} \cdot(2023-0+1)=\frac{2024}{2}=1012
$$

Problem 9. $\int_{0}^{\pi} \frac{e^{\cos (x)}}{e^{\cos (x)}+e^{-\cos (x)}} \mathrm{dx}$
Proposed by Ritvik Teegavarapu
Solution: $\frac{\pi}{2}$
We can utilize King's Rule, which is written below.

$$
\int_{a}^{b} f(x) \mathrm{dx}=\int_{a}^{b} f(a+b-x) \mathrm{dx}
$$

Thus, we label the initial integral as I and use King's Rule to get an alternate integral as follows. We also note that $\cos (\pi-x)=-\cos (x)$.

$$
I=\int_{0}^{\pi} \frac{e^{\cos (\pi-x)}}{e^{\cos (\pi-x)}+e^{-\cos (\pi-x)}} \mathrm{dx}=\int_{0}^{\pi} \frac{e^{-\cos (x)}}{e^{-\cos (x)}+e^{\cos (x)}} \mathrm{dx}
$$

Adding the two alternate forms of I, we have the following.

$$
2 I=\int_{0}^{\pi} \frac{e^{\cos (x)}}{e^{\cos (x)}+e^{-\cos (x)}} \mathrm{dx}+\int_{0}^{\pi} \frac{e^{-\cos (x)}}{e^{-\cos (x)}+e^{\cos (x)}} \mathrm{dx}
$$

Combining these two integrals together since they have the same bound and denominator, we have the following.

$$
2 I=\int_{0}^{\pi} \frac{e^{\cos (x)}+e^{-\cos (x)}}{e^{\cos (x)}+e^{-\cos (x)}} \mathrm{dx}
$$

We note that the numerator and the denominator are the same, meaning we have the following.

$$
2 I=\int_{0}^{\pi} \frac{e^{\cos (x)}+e^{-\cos (x)}}{e^{\cos (x)}+e^{-\cos (x)}} \mathrm{dx}=\int_{0}^{\pi} 1 \mathrm{dx}=\left.x\right|_{0} ^{\pi}=\pi \Longrightarrow I=\frac{\pi}{2}
$$

Problem 10. $\int_{0}^{1}\binom{22}{20} x^{2}(1-x)^{20} \mathrm{dx}$

Proposed by Ritvik Teegavarapu

Solution: $\frac{1}{23}$
We can utilize a u-substitution of the form $u=1-x$, which implies $\mathrm{du}=-\mathrm{dx}$.

$$
\int_{0}^{1}\binom{22}{20} x^{2}(1-x)^{20} \mathrm{dx} \underset{u=1-x}{\Longrightarrow} \int_{1}^{0}-\binom{22}{20}(1-u)^{2} u^{20} \mathrm{du}=\int_{0}^{1}\binom{22}{20}(1-u)^{2} u^{20} \mathrm{du}
$$

Expanding the inside of the integral, we have the following. We note that the following holds true.

$$
\binom{22}{20}=\frac{22!}{2!\cdot 20!}=\frac{22 \cdot 21}{2}=11 \cdot 21=231
$$

Substituting, we have the following.

$$
\int_{0}^{1} 231(1-u)^{2} u^{20} \mathrm{du}=231 \int_{0}^{1}\left(1-2 u+u^{2}\right) \cdot u^{20} \mathrm{du}=231 \int_{0}^{1} u^{20}-2 u^{21}+u^{22} \mathrm{du}
$$

Evaluating this integral, we have the following.

$$
231 \int_{0}^{1} u^{20}-2 u^{21}+u^{22} \mathrm{du}=231 \cdot\left[\frac{u^{21}}{21}-\frac{2 u^{22}}{22}+\frac{u^{23}}{23}\right]_{0}^{1}=231 \cdot\left[\frac{1}{21}-\frac{1}{11}+\frac{1}{23}\right]
$$

Simplifying, we have the following.

$$
231 \cdot\left[\frac{1}{21}-\frac{1}{11}+\frac{1}{23}\right]=11-21+\frac{230+1}{23}=-10+10+\frac{1}{23}=\frac{1}{23}
$$

An alternate, and significantly more elegant, solution is recognizing that the integrand is strikingly similar to the definition of the Beta function, which evaluates as follows.

$$
\beta(a, b)=\int_{0}^{1} x^{a-1}(1-x)^{b-1} \mathrm{dx}=\frac{(a-1)!(b-1)!}{(a+b-1)!}
$$

In our question, $a=3$ and $b=21$, which we can substitute and multiply accordingly by the binomial coefficient.

$$
\binom{22}{20} \cdot \beta(3,21)=\binom{22}{20} \cdot \int_{0}^{1} x^{2}(1-x)^{20}=\frac{22!}{20!\cdot 2!} \cdot \frac{2!\cdot 20!}{23!}=\frac{22!}{23!}=\frac{1}{23}
$$

Problem 11. $\int_{1}^{e} x^{\ln (x)-1} \cdot \ln (x) \mathrm{dx}$
Proposed by Jeck Lim
Solution: $\frac{e-1}{2}$

We note that du $=1 / x \mathrm{dx}$, so we can consider this as a u-substitution of $u=\ln (x)$ as follows. This also implies that $e^{u}=x$, which we can substitute in.

$$
\int_{1}^{e} \frac{x^{\ln (x)} \cdot \ln (x)}{x} \mathrm{dx} \Longrightarrow \int_{0}^{1}\left(e^{u}\right)^{u} \cdot u \mathrm{du}=\int_{0}^{1} u \cdot e^{u^{2}} \mathrm{du}
$$

We can consider the v-substitution, in which we allow $v=u^{2}$. This implies that $\mathrm{dv}=2 u \mathrm{du}$. Thus, we have the following.

$$
\int_{0}^{1} u \cdot e^{u^{2}} \mathrm{du} \Longrightarrow \int_{0}^{1} e^{v} \cdot\left(\frac{\mathrm{dv}}{2}\right)=\left.\left(\frac{e^{v}}{2}\right)\right|_{0} ^{1}=\frac{e^{1}}{2}-\frac{e^{0}}{2}=\frac{e-1}{2}
$$

Problem 12. $\int_{0}^{e^{\pi}} \sin (\ln (x)) \mathrm{dx}$

Proposed by Jeck Lim

Solution: $\frac{e^{\pi}}{2}$
We can consider $x=e^{u}$, which implies $\mathrm{dx}=e^{u} \mathrm{du}$ and the following equivalent integral.

$$
\int_{0}^{e^{\pi}} \sin (\ln (x)) \mathrm{dx} \Longrightarrow \int_{-\infty}^{\pi} \sin (u) \cdot e^{u} \mathrm{du}
$$

We can use integration by parts on this, with $a=\sin (u)$ and $\mathrm{db}=e^{u}$ du, which gives the following.

$$
\int a \mathrm{db}=a b-\int b \mathrm{da}=\left.\left(\sin (u) \cdot e^{u}\right)\right|_{-\infty} ^{\pi}-\int_{-\infty}^{\pi} \cos (u) \cdot e^{u} \mathrm{du}
$$

Doing integration by parts on this integral again, with $b=\cos (u)$ and da $=e^{u}$ du, we have the following.

$$
\int b \mathrm{da}=a b-\int a \mathrm{db}=\left.\left(\cos (u) \cdot e^{u}\right)\right|_{-\infty} ^{\pi}+\int_{-\infty}^{\pi} \sin (u) \cdot e^{u} \mathrm{du}
$$

Thus, we have the following, where I is the value of the initial integral.

$$
\begin{gathered}
I=\left.\left(\sin (u) \cdot e^{u}\right)\right|_{-\infty} ^{\pi}-\int_{-\infty}^{\pi} \cos (u) \cdot e^{u} \mathrm{du}=\left.\left(\sin (u) \cdot e^{u}\right)\right|_{-\infty} ^{\pi}-\left(\left.\left(\cos (u) \cdot e^{u}\right)\right|_{-\infty} ^{\pi}+I\right) \\
2 I=\left.\left(\sin (u) \cdot e^{u}\right)\right|_{-\infty} ^{\pi}-\left.\left(\cos (u) \cdot e^{u}\right)\right|_{-\infty} ^{\pi}=\left[\left(\sin (\pi) e^{\pi}\right)-\left(\sin (-\infty) e^{-\infty}\right)\right]-\left[\left(\cos (\pi) e^{\pi}\right)-\left(\cos (-\infty) e^{-\infty}\right)\right]
\end{gathered}
$$

All of the terms with $e^{-\infty}$ will vanish to 0 . Thus, we have the following.

$$
\left[\left(\sin (\pi) e^{\pi}\right)-\left(\sin (-\infty) e^{-\infty}\right)\right]-\left[\left(\cos (\pi) e^{\pi}\right)-\left(\cos (-\infty) e^{-\infty}\right)\right]=0 \cdot e^{\pi}-\left((-1) \cdot e^{\pi}\right)=e^{\pi}
$$

Thus, the value of the integral I can be calculated as follows.

$$
2 I=e^{\pi} \Longrightarrow I=\frac{e^{\pi}}{2}
$$

Problem 13. $\int_{1}^{e} \frac{\ln (x)}{(\ln (x)+1)^{2}} \mathrm{dx}$

Proposed by Jeck Lim

Solution: $\frac{e}{2}-1$
We consider the u-substitution of $x=e^{u}$ in order to eliminate the $\ln (x)$ present, which implies that $\mathrm{dx}=e^{u} \mathrm{du}$. Thus, we have the following equivalent integral.

$$
\int_{1}^{e} \frac{\ln (x)}{(\ln (x)+1)^{2}} \mathrm{dx} \Longrightarrow \int_{0}^{1} \frac{u}{(u+1)^{2}} \cdot\left(e^{u} \mathrm{du}\right)
$$

We can use partial fraction decomposition on the fraction as follows.

$$
\frac{u e^{u}}{(u+1)^{2}}=\frac{A e^{u}}{u+1}+\frac{B e^{u}}{(u+1)^{2}}
$$

Solving for A and B, we have the following.

$$
u e^{u}=A e^{u}(u+1)+B e^{u}
$$

Thus, $A=1$ and $B=-1$. Therefore, we can split the integral as follows.

$$
\int_{0}^{1} \frac{u}{(u+1)^{2}} \cdot\left(e^{u} \mathrm{du}\right)=\int_{0}^{1} \frac{e^{u}}{u+1} \mathrm{du}-\int_{0}^{1} \frac{e^{u}}{(u+1)^{2}} \mathrm{du}
$$

Performing integration by parts on the first integral, we have the following as our selection for a and b. We allow $\mathrm{a}=1 /(u+1)$ and $\mathrm{db}=e^{u} \mathrm{du}$.

$$
\int_{0}^{1} \frac{e^{u}}{u+1} \mathrm{du}=\int a \mathrm{db}=a b-\int b \mathrm{da}=\left.\frac{e^{u}}{u+1}\right|_{0} ^{1}+\int_{0}^{1} \frac{e^{u}}{(u+1)^{2}}
$$

Simplifying, we have the following.

$$
\left.\frac{e^{u}}{u+1}\right|_{0} ^{1}+\int_{0}^{1} \frac{e^{u}}{(u+1)^{2}}=\left(\frac{e^{1}}{1+1}\right)-\left(\frac{e^{0}}{0+1}\right)+\int_{0}^{1} \frac{e^{u}}{(u+1)^{2}} \mathrm{du}=\frac{e}{2}-1+\int_{0}^{1} \frac{e^{u}}{(u+1)^{2}} \mathrm{du}
$$

Substituting this equivalent expression, we note that the two integrals cancel, and we are left with the final result.

$$
I=\int_{0}^{1} \frac{u}{(u+1)^{2}} \cdot\left(e^{u} \mathrm{du}\right)=\left(\frac{e}{2}-1+\int_{0}^{1} \frac{e^{u}}{(u+1)^{2}} \mathrm{du}\right)-\int_{0}^{1} \frac{e^{u}}{(u+1)^{2}} \mathrm{du}=\frac{e}{2}-1
$$

Problem 14. $\int_{0}^{1}\left\lfloor\sin \left(\frac{\pi}{x}\right)\right\rfloor \mathrm{dx}$

Proposed by Jeck Lim

Solution: $\ln (1 / 2)$ or $-\ln (2)$
If we pick any $x \in[1 / 2,1]$, we note the following occurs at the bounds.

$$
\sin \left(\frac{\pi}{\frac{1}{2}}\right)=\sin (2 \pi)=0 \quad \sin \left(\frac{\pi}{1}\right)=\sin (\pi)=0
$$

We now need to note if the signed area will be positive or negative. Between the angles of π and $2 \pi, \sin (x)$ will be negative, namely less than 0 . Due to the floor function, this rounds down and we have that it evaluates to -1 . Thus, on this interval of $[0.5,1]$, the function in question will have a rectangle with width 0.5 , as well as a height of -1 (this implicates that the rectangle is subtended underneath the x-axis).

Repeating this process on the interval of $x \in[1 / 3,1 / 2]$, we note that the following occurs at the bounds.

$$
\sin \left(\frac{\pi}{\frac{1}{3}}\right)=\sin (3 \pi)=0 \quad \sin \left(\frac{\pi}{2}\right)=\sin (2 \pi)=0
$$

We now need to note if the signed area will be positive or negative. Between the angles of 2π and $3 \pi, \sin (x)$ will be positive, namely greater than 0 . Due to the floor function, this rounds down and we have that it evaluates to 0 . Thus, on this interval of $[0.5,1]$, the function in question will have a rectangle with width 0.5 and a height of 0 .

We can now see the general pattern. For any interval $[1 / k, 1 /(k+1)]$, we have that if k is odd the function evaluates to 0 . If we instead have that k is even, we have that the function evaluates to -1 . The function only gives the height of the rectangle, which means the width of the rectangle can be calculated from the length of the interval, which is $1 / k-1 /(k+1)$. Thus, the area summation is as follows.

$$
\int_{0}^{1}\left\lfloor\sin \left(\frac{\pi}{x}\right)\right\rfloor \mathrm{dx}=A=\sum_{k=1}^{\infty}(-1) \cdot\left(\frac{1}{k}-\frac{1}{k+1}\right)=-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\right)
$$

We can recognize this as the alternating harmonic series, which converges as follows.

$$
A=-\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\cdots\right)=-(\ln (2))=\ln (1 / 2)=\ln \left(2^{-1}\right)=-\ln (2)
$$

