
CHMMC 2023 Integration Bee Qualification Test Solutions

Problem 1.
∫ 8

0
5 · x

2
3 dx

Proposed by Ritvik Teegavarapu

Solution: 96 .

This is a simple use of the power rule for integrals.∫ 8

0
5 · x

2
3 dx =

5 · x 2
3+1

2
3 +1

∣∣∣∣8
0
= 3x

5
3

∣∣∣∣8
0
= 3 · (8)

5
3 −3 · (0)

5
3 = 3 · (2)5 −0 = 3 ·32 = 96

Problem 2.
∫ 12

0

1
(x−16) ln2

dx

Proposed by Ritvik Teegavarapu

Solution: −2 .

We can utilize regular integration properties as follows.∫ 12

0

1
(x−16) · ln(2)

dx =
ln(|x−16|)

ln(2)

∣∣∣∣12

0

Evaluating, we have the following.

ln(|x−16|)
ln(2)

∣∣∣∣12

0
=

ln(|12−16|)
ln(2)

− ln(|0−16|)
ln(2)

=
ln(4)
ln(2)

− ln(16)
ln(2)

We can use logarithm rules to prove the fact that ln(2a) = a ln(2), and simplify as follows.

ln(22)

ln(2)
− ln(24)

ln(2)
=

2ln(2)
ln(2)

− 4ln(2)
ln(2)

= 2−4 = −2

Problem 3.
∫ 20

−20
20−|x| dx

Proposed by Ritvik Teegavarapu

Solution: 400 .

This integral lends itself to a more geometric approach, in that the integrand can be decomposed into two tri-
angles. Specifically, we have that one of the triangles is sloping upward with m = 1 on the interval to [−20,0],
and one of the triangles is sloping downward with m =−1 on the interval to [0,20].

Therefore, we have two triangles, one on each sub-interval. Each of the triangles has a base of 20 since the
sub-interval lengths are each 20, and height 20 since the y-intercept of the lines mentioned above is 20. Thus,
adding the areas of both of these triangles, we have the following.

400
2

+
400
2

= 400
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The calculus-based approach is shown as follows.∫ 20

−20
20−|x| dx =

∫ 0

−20
(20+ x) dx+

∫ 20

0
(20− x) dx

∫ 0

−20
(20+ x) dx =

(
20x+

x2

2

)∣∣∣∣0
−20

= 200

∫ 20

0
(20− x) dx =

(
20x− x2

2

)∣∣∣∣20

0
= 200

∫ 20

−20
20−|x| dx = 200+200 = 400

Problem 4.
∫

∞

1

1√
x(1+ x)

dx

Proposed by Ritvik Teegavarapu

Solution:
π

2
.

We seek to remove the
√

t, so we split the fraction to set up the u-substitution.∫
∞

1

1√
t(1+ t)

dt =
∫

∞

1

2
2
√

t(1+ t)
dt =

∫
∞

1

1
2
√

t
· 2

1+ t
dt

Performing the u-substitution, we now have a much more recognizable integral.∫
∞

1

1
2
√

t
· 2

1+(
√

t)2
dt =⇒︸︷︷︸

u=
√

t

∫
∞

1

2
1+u2 du = 2arctan(u)

∣∣∣∣∞
1

2arctan(u)
∣∣∣∣∞
1
= 2arctan(∞)−2arctan(1) = 2 ·

(
π

2

)
−2 ·

(
π

4

)
=

π

2

Problem 5.
∫ 1

−1

1√
4− x2

dx

Proposed by Brian Yang

Solution:
π

3
.

With a u-substitution u = x
2 , which implies du = dx

2 , we have the following.∫ 1

−1

1√
4− x2

dx =
∫ 1

2

− 1
2

2√
4−4u2

du =
∫ 1

2

− 1
2

1√
1−u2

du

The anti-derivative of the integrand is the arcsin(x) function, so we compute as follows.∫ 1
2

− 1
2

1√
1−u2

du = arcsin
(

1
2

)
− arcsin

(
−1

2

)
=

π

6
−
(
−π

6

)
=

π

3

2



Problem 6.
∫ 2

0
(x2 −1) · (x3 −3x)

4
3 dx

Proposed by Ritvik Teegavarapu

Solution:
2

7
3

7
.

We recognize that this is a u-substitution, with u = x3 − 3x and du = 3x2 − 3 dx = 3(x2 − 1) dx. Thus, we
have the following upon changing the bounds.∫ 2

0
(x2 −1) · (x3 −3x)

4
3 dx =⇒︸︷︷︸

u=x3−3x

∫ 2

0

1
3
· (u)

4
3 du

This is a simple use of the power rule for integrals.

∫ 2

0

1
3
· (u)

4
3 du =

1
3
· u

4
3+1

4
3 +1

∣∣∣∣2
0
=

1
7

u
7
3

∣∣∣∣2
0
=

2
7
3

7

Problem 7.
∫ 2

1

2x3 −1
x4 + x

dx

Proposed by Ritvik Teegavarapu

Solution: ln(9/4) or 2 · ln(3/2)

To induce a u-substitution, we consider dividing by x2 in the numerator and denominator, we have the fol-
lowing. ∫ 2

1

2x3 −1
x4 + x

dx =
∫ 2

1

2x− 1
x2

x2 + 1
x

We now note that the numerator is simply the derivative of the denominator, as follows. Thus, we consider the
u-substitution of the denominator (x2 +1/x). This would change the bounds as follows.

u = 12 +
1
1
= 2 u = 22 +

1
2
=

9
2

Thus, the new integral becomes the following.

∫ 2

1

2x− 1
x2

x2 + 1
x

dx =
∫ 9

2

2

du
u

= ln(u)
∣∣∣∣ 9

2

2
= ln

(
9
2

)
− ln(2) = ln

(
9
4

)
= ln

(
32

22

)
= 2 · ln

(
3
2

)

Problem 8.
∫ 2024

0
x−⌊x⌋ dx

Proposed by Ritvik Teegavarapu

Solution: 1012

3



We note that on the interval [k,k + 1), we observe that {x} behaves like y = x. Thus, we split the integral
into intervals of length 1 as follows. Note that x− k is the line that is equivalent to {x} on the designated
interval. ∫ 2024

0
{x} dx =

2023

∑
k=0

∫ k+1

k
(x− k) dx

Evaluating the integral, we have the following.

∫ k+1

k
(x− k) dx =⇒︸︷︷︸

u=x−k

∫ 1

0
x dx =

x2

2

∣∣∣∣1
0
=

12

2
− 02

2
=

1
2

Substituting this into our summation, we have the following.

2023

∑
k=0

∫ k+1

k
(x− k) dx =

2023

∑
k=0

1
2
=

1
2
· (2023−0+1) =

2024
2

= 1012

Problem 9.
∫

π

0

ecos(x)

ecos(x)+ e−cos(x) dx

Proposed by Ritvik Teegavarapu

Solution:
π

2

We can utilize King’s Rule, which is written below.∫ b

a
f (x) dx =

∫ b

a
f (a+b− x) dx

Thus, we label the initial integral as I and use King’s Rule to get an alternate integral as follows. We also note
that cos(π − x) =−cos(x).

I =
∫

π

0

ecos(π−x)

ecos(π−x)+ e−cos(π−x)
dx =

∫
π

0

e−cos(x)

e−cos(x)+ ecos(x) dx

Adding the two alternate forms of I, we have the following.

2I =
∫

π

0

ecos(x)

ecos(x)+ e−cos(x) dx+
∫

π

0

e−cos(x)

e−cos(x)+ ecos(x) dx

Combining these two integrals together since they have the same bound and denominator, we have the follow-
ing.

2I =
∫

π

0

ecos(x)+ e−cos(x)

ecos(x)+ e−cos(x) dx

We note that the numerator and the denominator are the same, meaning we have the following.

2I =
∫

π

0

ecos(x)+ e−cos(x)

ecos(x)+ e−cos(x) dx =
∫

π

0
1 dx = x

∣∣∣∣π
0
= π =⇒ I =

π

2

4



Problem 10.
∫ 1

0

(
22
20

)
x2(1− x)20 dx

Proposed by Ritvik Teegavarapu

Solution:
1

23

We can utilize a u-substitution of the form u = 1− x, which implies du =−dx.∫ 1

0

(
22
20

)
x2(1− x)20 dx =⇒︸︷︷︸

u=1−x

∫ 0

1
−
(

22
20

)
(1−u)2u20 du =

∫ 1

0

(
22
20

)
(1−u)2u20 du

Expanding the inside of the integral, we have the following. We note that the following holds true.(
22
20

)
=

22!
2! ·20!

=
22 ·21

2
= 11 ·21 = 231

Substituting, we have the following.∫ 1

0
231(1−u)2u20 du = 231

∫ 1

0
(1−2u+u2) ·u20 du = 231

∫ 1

0
u20 −2u21 +u22 du

Evaluating this integral, we have the following.

231
∫ 1

0
u20 −2u21 +u22 du = 231 ·

[
u21

21
− 2u22

22
+

u23

23

]1

0
= 231 ·

[
1
21

− 1
11

+
1
23

]
Simplifying, we have the following.

231 ·
[

1
21

− 1
11

+
1

23

]
= 11−21+

230+1
23

=−10+10+
1
23

=
1
23

An alternate, and significantly more elegant, solution is recognizing that the integrand is strikingly similar to
the definition of the Beta function, which evaluates as follows.

β (a,b) =
∫ 1

0
xa−1(1− x)b−1 dx =

(a−1)!(b−1)!
(a+b−1)!

In our question, a= 3 and b= 21, which we can substitute and multiply accordingly by the binomial coefficient.(
22
20

)
·β (3,21) =

(
22
20

)
·
∫ 1

0
x2(1− x)20 =

22!
20! ·2!

· 2! ·20!
23!

=
22!
23!

=
1
23

Problem 11.
∫ e

1
xln(x)−1 · ln(x) dx

Proposed by Jeck Lim

Solution:
e−1

2

5



We note that du = 1/x dx, so we can consider this as a u-substitution of u = ln(x) as follows. This also
implies that eu = x, which we can substitute in.∫ e

1

xln(x) · ln(x)
x

dx =⇒
∫ 1

0
(eu)u ·u du =

∫ 1

0
u · eu2

du

We can consider the v-substitution, in which we allow v = u2. This implies that dv = 2u du. Thus, we have the
following. ∫ 1

0
u · eu2

du =⇒
∫ 1

0
ev ·
(

dv
2

)
=

(
ev

2

)∣∣∣∣1
0
=

e1

2
− e0

2
=

e−1
2

Problem 12.
∫ eπ

0
sin(ln(x)) dx

Proposed by Jeck Lim

Solution:
eπ

2

We can consider x = eu, which implies dx = eu du and the following equivalent integral.∫ eπ

0
sin(ln(x)) dx =⇒

∫
π

−∞

sin(u) · eu du

We can use integration by parts on this, with a = sin(u) and db = eu du, which gives the following.∫
a db = ab−

∫
b da = (sin(u) · eu)

∣∣∣∣π
−∞

−
∫

π

−∞

cos(u) · eu du

Doing integration by parts on this integral again, with b = cos(u) and da = eu du, we have the following.∫
b da = ab−

∫
a db = (cos(u) · eu)

∣∣∣∣π
−∞

+
∫

π

−∞

sin(u) · eu du

Thus, we have the following, where I is the value of the initial integral.

I = (sin(u) · eu)

∣∣∣∣π
−∞

−
∫

π

−∞

cos(u) · eu du = (sin(u) · eu)

∣∣∣∣π
−∞

−
(
(cos(u) · eu)

∣∣∣∣π
−∞

+ I
)

2I = (sin(u) · eu)

∣∣∣∣π
−∞

− (cos(u) · eu)

∣∣∣∣π
−∞

=
[
(sin(π)eπ)−

(
sin(−∞)e−∞

)]
−
[
(cos(π)eπ)−

(
cos(−∞)e−∞

)]
All of the terms with e−∞ will vanish to 0. Thus, we have the following.[

(sin(π)eπ)−
(
sin(−∞)e−∞

)]
−
[
(cos(π)eπ)−

(
cos(−∞)e−∞

)]
= 0 · eπ − ((−1) · eπ) = eπ

Thus, the value of the integral I can be calculated as follows.

2I = eπ =⇒ I =
eπ

2
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Problem 13.
∫ e

1

ln(x)
(ln(x)+1)2 dx

Proposed by Jeck Lim

Solution:
e
2
−1

We consider the u-substitution of x = eu in order to eliminate the ln(x) present, which implies that dx = eu du.
Thus, we have the following equivalent integral.∫ e

1

ln(x)
(ln(x)+1)2 dx =⇒

∫ 1

0

u
(u+1)2 · (e

u du)

We can use partial fraction decomposition on the fraction as follows.

ueu

(u+1)2 =
Aeu

u+1
+

Beu

(u+1)2

Solving for A and B, we have the following.

ueu = Aeu(u+1)+Beu

Thus, A = 1 and B =−1. Therefore, we can split the integral as follows.∫ 1

0

u
(u+1)2 · (e

u du) =
∫ 1

0

eu

u+1
du−

∫ 1

0

eu

(u+1)2 du

Performing integration by parts on the first integral, we have the following as our selection for a and b. We
allow a = 1/(u+1) and db = eu du.∫ 1

0

eu

u+1
du =

∫
a db = ab−

∫
b da =

eu

u+1

∣∣∣∣1
0
+
∫ 1

0

eu

(u+1)2

Simplifying, we have the following.

eu

u+1

∣∣∣∣1
0
+
∫ 1

0

eu

(u+1)2 =

(
e1

1+1

)
−
(

e0

0+1

)
+
∫ 1

0

eu

(u+1)2 du =
e
2
−1+

∫ 1

0

eu

(u+1)2 du

Substituting this equivalent expression, we note that the two integrals cancel, and we are left with the final
result.

I =
∫ 1

0

u
(u+1)2 · (e

u du) =
(

e
2
−1+

∫ 1

0

eu

(u+1)2 du
)
−
∫ 1

0

eu

(u+1)2 du =
e
2
−1

Problem 14.
∫ 1

0

⌊
sin
(

π

x

)⌋
dx

Proposed by Jeck Lim

Solution: ln(1/2) or − ln(2)

If we pick any x ∈ [1/2,1], we note the following occurs at the bounds.

sin

(
π

1
2

)
= sin(2π) = 0 sin

(
π

1

)
= sin(π) = 0
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We now need to note if the signed area will be positive or negative. Between the angles of π and 2π , sin(x)
will be negative, namely less than 0. Due to the floor function, this rounds down and we have that it evaluates
to −1. Thus, on this interval of [0.5,1], the function in question will have a rectangle with width 0.5, as well as
a height of −1 (this implicates that the rectangle is subtended underneath the x-axis).

Repeating this process on the interval of x ∈ [1/3,1/2], we note that the following occurs at the bounds.

sin

(
π

1
3

)
= sin(3π) = 0 sin

(
π

2

)
= sin(2π) = 0

We now need to note if the signed area will be positive or negative. Between the angles of 2π and 3π , sin(x) will
be positive, namely greater than 0. Due to the floor function, this rounds down and we have that it evaluates to
0. Thus, on this interval of [0.5,1], the function in question will have a rectangle with width 0.5 and a height of 0.

We can now see the general pattern. For any interval [1/k,1/(k + 1)], we have that if k is odd the function
evaluates to 0. If we instead have that k is even, we have that the function evaluates to −1. The function only
gives the height of the rectangle, which means the width of the rectangle can be calculated from the length of
the interval, which is 1/k−1/(k+1). Thus, the area summation is as follows.∫ 1

0

⌊
sin
(

π

x

)⌋
dx = A =

∞

∑
k=1

(−1) ·
(

1
k
− 1

k+1

)
=−

(
1− 1

2
+

1
3
− 1

4
+ · · ·

)
We can recognize this as the alternating harmonic series, which converges as follows.

A =−
(

1− 1
2
+

1
3
− 1

4
+ · · ·

)
=−(ln(2)) = ln(1/2) = ln

(
2−1)= − ln(2)
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