
Chapter 5

Complex Numbers

5.1 The Set of Complex Numbers

In a previous chapter, we noted that, for any real number x ∈ R, it is always
true that x2 ≥ 0. Thus, solutions to equations like x2 = −1 are never possible
when considering only real numbers. This may seem as if it’s not a big deal,
until we realize that this prohibits us from finding roots to a polynomial as
simple x2 + 1. Since roots of polynomials are crucial in various fields of Math-
ematics, mathematicians wished to expand their notion of a number to include
solutions to x2 + 1 = 0. In doing so, the complex numbers were created and
Mathematics as we know it has never been the same. This chapter will provide
an introduction to the basic algebraic structure of the complex numbers, along
with some interesting applications.

5.1.1 Constructing Complex Numbers.

Since no real solution to the equation x2 + 1 = 0 exists, mathematicians simply
created an object that had this property and called it the imaginary number
i. Thus, i is a non-real number such that i2 = −1. To make i relevant to
the existing set of real numbers R, mathematicians needed to place this i in a
set that seemed to be larger than R itself but still followed many of the same
algebraic rules as R.

Thus, we defined the set of complex numbers, denoted by C, as

C = {a+ bi | a, b ∈ R}.

An individual complex number is simply a real number a added to another real
number b multiplied by this new imaginary number i. From its definition, it is
clear that C seems to contain two copies of the real numbers R; one of which
stands by itself and the other of which is attached to i. If we write z = a+ bi,
then we have the following definitions.

· The real part of z is the portion of the complex number not attached to
the i. Thus, it is given by

Re(z) = Re(a+ bi) = a.

· The imaginary part of z is the portion of the complex number that is
attached to the i. Thus, it is given by

Im(z) = Im(a+ bi) = b.

In particular, the imaginary part does not include the imaginary i term.
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It is important to note that if z is a complex number, then its real and
imaginary parts are both real numbers.

5.1.2 The Reals as a Subset of the Complex Numbers

Since the complex numbers were seen as an extension of the set of real numbers,
it is natural to believe that R is a subset of C. Of course, to prove this subset
inclusion, we must show that if x ∈ R, then x ∈ C. Indeed, if x ∈ R, then
x = x + 0i ∈ C. Thus, R ⊂ C. In fact, we have the following series of subset
inclusions:

N ⊂ Z ⊂ Q ⊂ R ⊂ C.

5.2 Complex Arithmetic

Above, we showed that C is an extension of R in the sense that R is a subset
of C. We must, however, also endow C with an algebraic structure that is
compatible with the algebraic structure on R. Indeed, complex arithmetic is
defined exactly as one would expect, with the added condition that i2 = −1. If
z = a + bi and w = c + di, we can define complex arithmetic in the following
way.

· Complex Addition. To add z = a+ bi and w = c+ di, we simply combine
their real and imaginary parts to obtain

z + w = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

· Complex Multiplication. To multiply z = a+ bi and w = c+di, we simply
FOIL, use the fact that i2 = −1, and combine real and imaginary parts
to obtain

z · w = (a+ bi) · (c+ di) =

ac+ adi+ bci+ bdi2 = (ac− bd) + (ad+ bc)i.

· Complex Inversion. If z = a + bi and z 6= 0 + 0i, then we can find
1

z
by multiplying by a special form of 1 that is given by (what will soon be
called) the complex conjugate:

1

z
=

1

a+ bi
=

1

a+ bi
· a− bi
a− bi

=

a− bi
a2 − b2i2

=
a− bi
a2 + b2

=
a

a2 + b2
+

−b
a2 + b2

i.

Notice that, since z 6= 0 + 0i, then a 6= 0 or b 6= 0 so the denominators
a2 + b2 6= 0.

· Complex Division. Since we know how to multiply and how to invert, we
can define complex division z ÷ w for w 6= 0 as

z ÷ w = z · 1

w
.

The above arithmetic operations on C give it an algebraic structure that is
very similar to R but also utilizes the fact that i2 = −1. Notice that the above
definitions also show that C enjoys nice algebraic properties like being closed
under addition, multiplication, additive inverses, and multiplicative inverses. In
fact, C, just like Q and R, is a field.
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5.2.1 Complex Conjugation

Above, we saw that we were able to write the inverse 1
a+bi in standard complex

number form by multiplying by a special fraction equal to 1, where the numera-
tor and denominator were both equal to a− bi. The relationship between a+ bi
and a− bi is called complex conjugation. More precisely, if z = a+ bi, we define
its complex conjugate z to be

z = a+ bi = a− bi.

Thus, conjugation leaves the real part of a complex number alone and negates
its imaginary part.

Complex conjugation is a very important operation on the set of complex
numbers. Below are some of its more helpful features.

· Performing complex conjugation twice returns the original input. In other
words, if z = a+ bi, then

z = a− bi = a+ bi = z.

· We can use the complex conjugate of a number to define the real part of
a complex number. Namely,

Re(z) =
z + z

2
.

To verify this, we see that

z + z

2
=
a+ bi+ a+ bi

2
=
a+ bi+ a− bi

2
=

2a

2
= a = Re(z).

· Similarly, we can use the complex conjugate of a number to define the
imaginary part of a complex number. Namely,

Im(z) =
z − z

2i
.

To verify this, we see that

z − z
2i

=
a+ bi− (a+ bi)

2i
=
a+ bi− (a− bi)

2i
=

2bi

2i
= b = Im(z)

· In numerous instances, the number z · z is frequently utilized. Notice that

z · z = (a+ bi)(a− bi) = a2 + b2.

Thus, z · z is a real, non-negative number. In fact, z · z is 0 if and only if
z = 0 + 0i.

In fact, one of the most helpful aspects of the complex conjugate is to test
if a complex number z = a+ bi is real. A complex number is real if and only if
z = a+ 0i; in other words, a complex number is real if it has an imaginary part
of 0.

Proposition. Let z ∈ C. z is real if and only if z = z.

Discussion. Our statement is the biconditional p ⇔ q where p is given by “z
is real” and q is given by “z = z.” Thus, we need to prove the following two
conditional statements:
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· p⇒ q: “If z is real, then z = z,” which will be a direct calculation.

· q ⇒ p: “If z = z, then z is real,” which we can show by showing that
z = a+ 0i.

Proof. Let z = a+bi, where a, b ∈ R. We will prove our biconditional statement
by showing two conditional statements: “If z is real, then z = z” and “If z = z,
then z is real.”

For the first conditional statement, assume that z is real. Then, z = a+ 0i.
Thus,

z = a+ 0i = a− 0i = a = z,

as desired.
For the second conditional statement, assume that z = z. Then,

a+ bi = a+ bi = a− bi,

and thus a+ bi = a− bi. Subtracting a from both sides, we get that bi = −bi.
Dividing by i, we get b = −b and thus 2b = 0. Thus, b = 0 and so z = a+ bi =
a+ 0i, a real number.

Having proven both conditional statements, we have shown that “z is real if
and only if z = z.”

�

5.3 The Geometry of the Complex Plane

5.3.1 The Complex Plane

From its definition, the set of complex numbers C can be seen as something
resembling the product of two copies of R, one for its real part and the other
for the imaginary part. This implies that, if we are to assign some kind of
geometry to the complex numbers, that we should look at the real plane R2 for
inspiration.

The real plane R2 is given by

R2 = {(x, y) |x, y ∈ R}.

Geometrically, we interpret this as a two-dimensional plane, where individual
elements of the plane can be given in terms of their x and y coordinates. Since
the complex numbers are defined as

C = {a+ bi | a, b ∈ R},

we can think of the real part a of the complex number as the x-coordinate and
the imaginary part b as the y-coordinate. Thus, the complex plane is the two-
dimensional plane with two axes, a horizontal real axis and a vertical imaginary
axis. We position the complex number a + bi to have coordinate a on the real
axis and b on the imaginary axis. Thus, if we were to think of the complex plane
as R2, then the complex number a+ bi should be thought of as (a, b).

We can further interpret some of the above algebra of the complex numbers
in this new geometric lens. We give a couple of examples below.

· If z, w ∈ C, then the sum z+w is the point on the plane that, along with
z, w, and 0, are the vertices of a parallelogram.

· If z ∈ C, then its complex conjugate z is simply the reflection of the point
z about the real axis. Notice that if z is real, then it lies on the real axis
and thus reflecting about that axis will not change the point; this is the
geometric manifestation of the fact that if z is real, then z = z.
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5.3.2 The Modulus of a Complex Number

In the regular geometry on R2, we can compute the distance between (x, y) ∈ R2

and the origin (0, 0) by √
x2 + y2.

If we translate this in terms of the complex plane, then the distance between a
complex number z = a+ bi and the complex number 0 + 0i is√

a2 + b2.

This inspires the following definition: if z = a + bi ∈ C, then we can define its
modulus by

|z| =
√
a2 + b2.

Notice that, as we expect with a “distance”, even though z is complex, |z| is
always real and non-negative. In fact, it enjoys many other properties, given
below.

· z is equal to 0 if and only if |z| = 0. This is true because
√
a2 + b2 = 0

only if both a and b are zero.

· We can write the modulus in terms of complex conjugation by

|z| =
√
z · z.

· The notation |z| is, of course, identical to that of the absolute value of a
real number. Indeed, if z = a+ 0i is real, then

|z| = |a+ 0i| =
√
a2 + 02 = |a|,

where |z| means the modulus of the complex number z and |a| means the
absolute value of the real number a. Thus, the complex modulus is a
generalization of the absolute value of a real number.

· |z| is seen as the distance in the complex plane between z and 0+0i (which
is at the intersection of the real and imaginary axes). We can, however,
compute the distance between any two complex number z, w ∈ C by

|z − w|.

· We can use the modulus to define interesting curves in the complex plane.
For example, if we wish to sketch the curve associated to |z| = r for some
real r ≥ 0, then we are asking for all complex numbers z with the property
that their modulus (distance to the origin) is equal to r. Writing this out,
if z = a+ bi, then |z| = r is equivalent to√

a2 + b2 = r.

Squaring both sides, we get the equation a2 + b2 = r2. Since a and b give
the real and imaginary coordinates, this simply corresponds to a circle of
radius r about the origin.

· Generalizing the equation above, we can obtain the circle of radius r ≥ 0
centered at the complex number w ∈ C by considering all solutions z to
the equation |z − w| = r. Since |z − w| is the distance from z to w, then
this equation asks for all points z a distance of r from w, which is precisely
a circle of radius r about w.
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5.4 Euler’s Equation and the Polar Representa-
tion of the Complex Plane

5.4.1 From Taylor Series to the Euler Equation

In Calculus, we were exposed to the Taylor Series for several important real
functions like ex, cosx, and sinx. They are given below

ex =

∞∑
k=0

xk

k!

cosx =

∞∑
k=0

(−1)kx2k

(2k)!

sinx =

∞∑
k=0

(−1)kx2k+1

(2k + 1)!
.

Many students comment on the fact that these series have similar characteristics.
For example, all contain factorial terms in the denominator and, more precisely,
the term being factorialized is equal to the exponent of x in the numerator.
One big difference, though, is that ex contains all natural numbers as exponents
while cosx and sinx have only even and odd exponents, respectively.

This last observation leads to the following question: Is there a way to write
the Taylor expansion for ex in terms of the Taylor expansions for cosx and
sinx? Since cosx and sinx have the odd and even exponents, perhaps they can
be added up in a way that would produce all of the Taylor expansion for ex.

Given our newfound knowledge of imaginary numbers, we can ask what
happens when we plug in x = iθ into the Taylor expansion for ex. To do so,
we will first note that raising i to whole number exponents will produce the
following cyclic behavior:

i1 = i, i2 = −1, i3 = −i, and i4 = 1,

which will repeat over and over. Thus, we can expand out eiθ as

eiθ =

∞∑
k=0

(iθ)k

k!
=

1 + (iθ) +
(iθ)2

2!
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+

(iθ)6

6!
+

(iθ)7

7!
+

(iθ)8

8!
+ · · · =

1 + iθ − θ2

2!
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
− θ6

6!
− iθ

7

7!
+
θ8

8!
+ · · · =(

1− θ2

2!
+
θ4

4!
− θ6

6!
+
θ8

8!
+ · · ·

)
+ i

(
θ − θ3

3!
+
θ5

5!
− θ7

7!
+ · · ·

)
=

cos θ + i sin θ.

Thus, we have arrived at one of the most important mathematical equations
ever produced. It is called the Euler equation and it says that

eiθ = cos θ + i sin θ.

Before we begin discussing the deep importance of this equation, we must note
that in the above computation, we moved around the order of infinitely many
terms in the Taylor series. This cannot be done in general but is allowed when
our series are absolutely convergent, which all of ours are.
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5.4.2 The Euler Equation and Complex Polar Form

The utility of the Euler equation comes from the fact that its right-hand side
cos θ+ i sin θ is a complex number with real part cos θ and imaginary part sin θ.
Since this complex number is equal to eiθ, then any complex number of the form
cos θ + i sin θ can be replaced by eiθ.

If we think about which complex numbers have their real part being cos θ
and their imaginary parts being sin θ, we can find motivation in asking which
points in R2 have their x-values being cos θ and their y-values being sin θ. Using
basic trigonometry, we can see that a point on the circle of radius 1 centered
at the origin making a counterclockwise angle of θ with the positive x-axis has
exactly these coordinates.

If we have a point that is not on the circle of radius 1 centered at the origin,
then it is on the circle of radius r centered at the origin for some r ≥ 0. More
basic trigonometry tells us that a point on a circle of radius r about the origin
making an angle of θ with the positive x-axis has x-coordinate r cos θ and y-
coordinate r sin θ. In complex notation, this is just r cos θ + ir sin θ. By the
Euler equation, though, we have that

reiθ = r cos θ + ir sin θ.

Thus, we have arrived at a new representation for complex numbers that
is almost identical to that of polar coordinates. This new polar form is given
as follows: the complex number reiθ is the point on the complex plane that is
distance r from the origin and makes a counterclockwise angle of θ with the
positive real axis.

Below are some examples and properties of this new representation for com-
plex numbers.

· The complex number 3ei
π
3 can be computed using Euler’s equation by

3ei
π
3 = 3 cos

(π
3

)
+ i3 sin

(π
3

)
=

3
1

2
+ i3

√
3

2
=

3

2
+

3
√

3

2
i

· Notice that the complex number i makes an angle of π/2 with the positive
real axis and is distance 1 form the origin. Thus,

i = ei
π
2 .

We can confirm this using Euler’s equation:

ei
π
2 = cos(π/2) + i sin(π/2) = 0 + 1i = i.

· Notice that any positive real number r ≥ 0 makes an angle of 0 with the
positive real axis and is distance r from the origin. Thus,

r = rei0,

which is certainly true since e0 = 1.

· The real number −1 makes an angle of π with the positive real axis and
is distance 1 from the origin. Thus,

−1 = eiπ.

This is remarkable because, if we slightly rearrange this expression, we
arrive at an equation that includes the five most important mathematical
constants (0, 1, e, i, π):

eiπ + 1 = 0.
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· Unlike with the standard (Cartesian) form for a complex number a + bi,
the polar form reiθ is non-unique. For example, if we replace θ with θ+2π
(or add any other integer multiple of 2π), the complex number does not
change. Thus,

reiθ = rei(θ+2πk)

for any k ∈ Z. Algebraically, this comes from the fact that both sinx and
cosx are periodic of period 2π. Geometrically, it comes form the fact that
making an angle of θ is the same as making an angle of θ + 2πk.

5.4.3 The Algebra & Geometry Associated to reiθ

The polar form of a complex number will make many computations significantly
easier. Unlike the cartesian a + bi form, the polar form seems to be better
suited for dealing with complex multiplication. Before we begin, we note that,
indeed, the algebra associated to having a complex exponent is identical to the
algebra associated to having a real exponent. In particular, all of the usual laws
of exponents hold. Using this, we have the following algebraic and geometric
properties of reiθ.

· Complex multiplication can be more easily seen using the polar form. In
particular, if we have two complex numbers z1 and z2 written in polar
form, then z1 = r1e

iθ1 and z2 = r2e
iθ2 . Multiplying, we have

z1 · z2 = r1e
iθ1 · r2eiθ2 = (r1r2)ei(θ1+θ2).

Thus multiplying two complex numbers r1e
iθ1 and r2e

iθ2 will produce
another complex number that is distance r1r2 away from the origin and
makes an angle of θ1 + θ2 with the positive real axis.

· We expect that the modulus of a complex number z = reiθ will be equal
to r, since this is its distance to the origin. Using Euler’s equation, we see
that this is indeed true:

|z| =
∣∣reiθ∣∣ = |r cos θ + ir sin θ| =√

(r cos θ)2 + (r sin θ)2 = r
√

cos2 θ + sin2 θ = r.

Here, we used the well-known Pythagorean identity that sin2 θ+cos2 θ = 1
for all values of θ.

· We can also use the Euler equation to compute the conjugate of a complex
number z = reiθ in polar form. Recalling that sin(−θ) = − sin θ and
cos(−θ) = cos θ, we have that

z = reiθ = r cos θ + ir sin θ =

r cos θ − ir sin θ = r cos(−θ) + ir sin(−θ) = rei(−θ).

Thus, the conjugate of reiθ is just rei(−θ); so, taking a conjugate will keep
the distance to the origin the same, but will making an angle of −θ instead
of θ. This geometrically corresponds to reflecting the point about the real
axis, as is true with the usual Cartesian form of complex numbers.

· We can raise e to any complex number. For example, if we have a + bi,
then we place this in the exponent and simplify using basic exponent rules:

ea+bi = ea · eib.

Since a, b ∈ R, then ea+bi will be a distance ea from the origin and will
make an angle of b with the positive real axis.
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Euler’s equation also provides us with an excellent way to remember the
various trigonometric identities that we use frequently in Mathematics. For
example, consider the following.

· Consider ei(2θ). Since complex exponents follow the same rules as real

exponents, then we can re-write ei(2θ) as
(
eiθ
)2

. Expanding the ei(2θ)

gives us
ei(2θ) = cos(2θ) + i sin(2θ).

Expanding
(
eiθ
)2

gives us(
eiθ
)2

= (cos θ + i sin θ)2 =

cos2 θ + 2i sin θ cos θ + i2 sin2 θ = (cos2 θ − sin2 θ) + i(2 sin θ cos θ).

Since the above expressions are all equal, then

cos(2θ) + i sin(2θ) = (cos2 θ − sin2 θ) + i(2 sin θ cos θ).

For two complex numbers to be equal, their real parts and their imaginary
parts must be equal. Equating these, we obtain two well-known double-
angle formulae from trigonometry:

cos(2θ) = cos2 θ − sin2 θ

sin(2θ) = 2 sin θ cos θ.

· We may generalize the above observations by using the more general fact
that ei(nθ) = (eiθ)n. Re-writing this using the Euler equation, we get
DeMoirve’s Formula, which states that

cos(nθ) + i sin(nθ) = (cos θ + i sin θ)n.
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