
CHMMC 2020-2021

Proof Round Solutions
1. (5 pts) Let n be a positive integer, K = {1, 2, . . . , n}, and σ : K → K be a function with the

property that σ(i) = σ(j) if and only if i = j (in other words, σ is a bijection). Show that there is
a positive integer m such that

σ(σ(. . . σ(i) . . . ))︸ ︷︷ ︸
m times

= i

for all i ∈ K.

Solution:

Denote σk as the composition of σ by k times. Consider any i ∈ K. Assume on the contrary that
the following sequence

σ(i), σ2(i), . . . σn(i)

does not contain i. Then, by the Pigeonhole Principle, there exists some 1 ≤ a < b ≤ n so that
σa(i) = σb(i). Since σ is a bijection, the pre-images of σa(i) and σb(i) are unique and given by σa−1(i)
and σb−1(i), respectively. Furthermore, since σa(i) = σb(i), we have that σa−1(i) = σb−1(i). Repeating
this analysis, we have that i = σa−a(i) = σb−a(i), a contradiction. Thus, our assumption is false, so
there must exist a positive integer mi ≤ n such that σmi(i) = i.

Hence, the value m = lcm(m1, . . . ,mn) satisfies the desired property. �

2. (5 pts) For some positive integer n, let P (x) be an nth degree polynomial with real coefficients.

Note: you may cite, without proof, the Fundamental Theorem of Algebra, which states that every
non-constant polynomial with complex coefficients has a complex root.

(a) (2 pts) Show that there is an integer k ≥ n
2 and a sequence of non-constant polynomials with

real coefficients Q1(x), Q2(x), . . . , Qk(x) such that

P (x) =

k∏
i=1

Qi(x).

(b) (1 pt) If n is odd, then show that P (x) has a real root.

(c) (2 pts) Let a and b be real numbers, and let m be a positive integer. If ζ = a + bi is a
nonreal root of P (x) of multiplicity m, then show that ζ = a− bi is a nonreal root of P (x) of
multiplicity m.

Solution (a):

We proceed with strong induction on n and show that we can take k ≥ dn2 e.

Base case: n = 1, 2. By assumption, a linear or quadratic polynomial with real coefficients can
be written as the product of dn2 e = 1 polynomial with real coefficients. This verifies the base case.

Induction step: n ≥ 3. By the Fundamental Theorem of Algebra, P (x) has a complex root ζ.

If ζ is real, then we see that P (x) = (x−ζ)R1(x) where R1(x) is degree n−1 with real coefficients.
By the inductive assumption, R1(x) can be written as a product of dn−12 e polynomials with real
coefficients. Since x − ζ has real coefficients, we conclude that P (x) can be written as a product of
dn−12 e+ 1 ≥ dn2 e polynomials with real coefficients.
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On the other hand, if ζ is nonreal, then by the Conjugate Root Theorem, ζ is a nonreal root of
P (x) as well. Then, (x − ζ)(x − ζ) = x2 − (ζ + ζ)x + |ζ|2 has real coefficients and in fact P (x) =
(x− ζ)(x− ζ)R2(x) where R2(x) is degree n− 2 with real coefficients. By the inductive assumption,
R2(x) can be written as a product of dn−22 e polynomials with real coefficients. We conclude that P (x)
can be written as a product of dn−22 e+ 2 = dn2 e polynomials with real coefficients. This completes the
induction and thus the proof. �

Solution (b):

By (a), we have that

P (x) =

k∏
i=1

Qi(x).

where k ≥ n
2 . Since n is odd, we see in fact that k > n

2 . By the Pigeonhole Principle, there must be

some Qj(x) = ax − b, a degree 1 polynomial with real coefficients. Qj(x) has a real root b
a , so P (x)

does as well. �

Solution (c):

Suppose that ζ has multiplicity m and ζ has multiplicity s, where s is a positive integer. Then
we see that P (x) = (x− ζ)m(x− ζ)sR(x), where ζ, ζ are not roots of polynomial R(x).

Assume on the contrary that s < m. Then P (x) = (x − ζ)s(x − ζ)s(x − ζ)m−sR(x). Since
(x − ζ)s(x − ζ)s = (x2 − (ζ + ζ)x + |ζ|2)s has real coefficients, we see that (x − ζ)m−sR(x) has real
coefficients as well. Since ζ is a root of (x− ζ)m−sR(x), ζ is a root of (x− ζ)m−sR(x) as well. This is
a contradiction by the earlier assumption that ζ, ζ are not roots of polynomial R(x).

We can disprove the case s > m by a similar argument. Hence, we conclude that s = m. �

3. (6 pts) Find all positive integers n ≥ 3 such that there exists a permutation a1, a2, . . . , an of
1, 2, . . . , n such that a1, 2a2, . . . , nan can be rearranged into an arithmetic progression.

Solution:

We claim that a1, 2a2, . . . , nan cannot be arranged as an arithmetic progression for all integers
n ≥ 3.

Lemma: For a prime p and an arithmetic progression of integers A = x1, x2, . . . , xk with common
difference d such that p - d, there will be k1 ∈ {bkpc, d

k
pe} terms of the progression that are multiples

of p. Furthermore, at most dk1p e of those multiples of p are also multiples of p2. Note: if p | d,
then all elements ai are mutually congruent (mod p), so there must be either 0 or k multiples of p
in the arithmetic progression. Also, note this arithmetic progression is an arbitrary one, not the one
originally referred to in the problem.

Proof of lemma: If p - d, then by Bezout’s Lemma there must be some integer 1 ≤ j ≤ p such that
p | x1 + d(j − 1) = xj . Therefore, the multiples of p in A are precisely indexed by the set of integers
{j+ pZ}∩{1, 2, . . . , k}. The multiples of p in A occur in intervals of p terms, so A contains either bkpc
or dkpe multiples of p.

Again using the notation from the Lemma, let B be the arithmetic subsequence of A containing
only the k1 ∈ {bkpc, d

k
pe} multiples of p. B has common difference pd, so we may divide all terms in B

by p to obtain another arithmetic sequence B
p of integers with common difference d. However, p - d,

so by the argument from the above paragraph, Bp contains at most dk1p e multiples of p. It follows that

B contains at most dk1p e multiples of p2.
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Now return to the problem. We use the above observations repeatedly to address the following
cases of n.

n is prime: If a1, 2a2, · · · , nan could be arranged as an arithmetic progression, then by the Lemma,
we would either have exactly one term jaj to be divisible by n or all terms jaj to be divisible by n
(there is clearly at least one multiple of n). Since n is prime, at most two terms of a1, 2a2, · · · , nan
are multiples of n. Thus, it is impossible for all terms jaj to be divisible by n. Therefore the former
case must hold; since n is prime, it follows that an = n =⇒ nan = n2. The arithmetic progression
has common difference ≥ 2n + 1, as the second largest possible term is at most (n − 1)2. Then the
smallest term of the arithmetic progression is at most n2 − (n− 1)(2n+ 1) ≤ 0, a contradiction.

n = 4, 6, 8, 10: If a1, 2a2, · · · , nan could be arranged as an arithmetic progression, then by the
Lemma, we would either have exactly n

2 terms jaj to be even or all terms jaj to be even. If exactly
half of the terms jaj is even, then they are also multiples of 4, since n is even, which is impossible
by the Lemma. If all terms jaj are even, then we are “pairing” each even number in 1, 2, . . . , n to an
odd number, and each odd number in 1, 2, . . . , n to an even number. Now consider the following two
subcases:

• n = 4, 8: The sequence a1, 2a2, · · · , nan must have multiples of 4 and non-multiples of 4; if all the
terms were multiples of 4 then every odd j ∈ {1, . . . , n} would be paired with a 0 (mod 4) element
of {1, . . . , n}, which is not possible. Thus, the common difference d is even but not a multiple of 4.
Suppose i is such that ai = n; we pair evens and odds, so i 6= n. Then, we see that nan and iai
differ by a multiple of 2n = 8, 16; both are divisible by n and n is even and we pair evens to odds
so an and i are both odd. This is not possible: since 4 - d, the common difference between any two
terms of a1, 2a2, · · · , nan cannot be a multiple of 8 (for the case n = 4) or 16 (for the case n = 8).
In particular, if two terms nan, iai are n > k > 0 terms apart in the arithmetic progression, then
dk = 2n, so k, n have the same number of factors of 2. But n is a power of 2 in these cases, so
k ≥ n, a contradiction.

• n = 6, 10: as we pair odd and even numbers in a1, 2a2, · · · , nan, we see that there are exactly 2, 4
values jaj that are multiples of 4, respectively. By the Lemma, both of these cases are impossible.

n = 9, n ≥ 12: We may write n = 3k + m, where k ≥ 3,m = 0, 1, 2. If a1, 2a2, · · · , nan could be
arranged as an arithmetic progression, then by the Lemma, we would either have k terms jaj to be
multiples of 3, k+ 1 terms jaj to be multiples of 3 (only if m 6= 0), or all terms jaj to be multiples of
3. The last case is clearly impossible since we can “distribute” multiples of 3 to at most 2k terms jaj
in the sequence; exactly k of {1, . . . , n} = {a1, . . . , an} are divisible by 3. If there are only k values jaj
that are multiples of 3, then they are also multiples of 9 (since we multiply 3, 6, . . . , 3k by multiples
of 3: a3, a6, . . . , a3k, there being exactly k of {1, . . . , n} = {a1, . . . , an} are divisible by 3). By the
Lemma, this is impossible, as dk3e < k.

Finally, if there are k + 1 terms jaj that are multiples of 3, then we know that there are still at
least k−1 of those terms that are also multiples of 9, there being exactly k of {1, . . . , n} = {a1, . . . , an}
are divisible by 3. However, by the Lemma there can be at most dk+1

3 e values jaj that are multiples

of 9, implying that dk+1
3 e < k − 1 for all k ≥ 4, which is a contradiction.

We have covered all possible values of n ≥ 3, thus completing the proof. �

4. (7 pts) Fix a positive integer n. Pick 4n equally spaced points on a circle and color them alternately
blue and red. You use n blue chords to pair the 2n blue points, and you use n red chords to pair
the 2n red points. If some blue chord intersects some other red chord, then such a pair of chords
is called a “good pair.”

(a) (1 pts) For the case n = 3, explicitly show that there are at least 3 distinct ways to pair the 2n
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blue points and the 2n red points such that there are a total of 3 good pairs (2 configurations
of chord pairings are not considered distinct if one of them can be “rotated” to the other).

(b) (6 pts) Now suppose that n is arbitrary. Find, with proof, the minimum number of good pairs
under all possible configurations of chord pairings.

Solution (a):

Here are 3 possible ways to obtain 3 good pairs in the case n = 3:

Solution (b):

We prove a Lemma beforehand:

Lemma: Given 2n fixed points on a circle. We connect these 2n points with n chords, such that each
point is connected to exactly one chord. Consider doing the following operations: For any two chords
AC and BD that intersect with each other inside the circle (assume that the four points A,B,C,D
are counter-clockwisely oriented on the circle), we replace the two chords with AB and CD. Such
operation must terminate after finitely many steps.

Proof of lemma: Let k denote the number of ways to select n chords connecting 2n fixed points on a
circle, such that each point is connected to exactly one chord. Given that n <∞, we have that k must
also be finite. For any 1 ≤ i ≤ k, consider the i-th way of selecting such n chords. Correspondingly,
let Li denote the sum of the lengths of the n chords selected in the i-th way. Let S = {L1, L2, · · · , Lk}
denote the set of all sums of the n chords’ lengths. We have that S is also a finite set. Now we consider
the operation described in the Lemma.

Assume that the intersection of the two chords AC and BD is O, which is in the interior of
the circle. Then we have that AO + BO > AB and CO + DO > CD. Taking the sum of the two
inequalities yields

AC +BD = (AO + CO) + (BO +DO) = (AO +BO) + (CO +DO) > AB + CD.

Hence, we have that after such operation, the variable L, which denotes the sum of the n selected
chords’ lengths, must strictly decrease. Since we always have L ∈ S and S is a finite set, we can
conclude that such operation must terminate after finitely many steps (when L attains the minimum
element of S).

Now return to the original problem.

Color the intersection of a red chord and a blue chord green. Then we have that the number of
green points is equal to the number of “good pairs”. Now consider applying the operation described
in the Lemma to the n red chords and checking how the number of green points varies.
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Take AC and BD to be any two red chords that intersect inside the circle (Assume that the four
points A,B,C,D are counter-clockwisely oriented on the circle).

After the operation, the two red chords AC and BD are now replaced with two red chords AB
and CD. Take EF to be an arbitrary blue chord and consider how the number of green points on
chord EF varies after such operation. Based on the positions of the two points E,F , we have the
following cases:

• Case 1: Both E and F are on arc ÂB/arc B̂C/arc ĈD/arc D̂A.
We have that the number of green points on EF is unchanged after the replacement (AC,BD)→
(AB,CD).

• Case 2: One of the two points (E,F ) is on arc ÂB, while the other point is on arc B̂C.
We have that the number of green points on EF is unchanged, where one green point transits from
red chord DB to red chord AB.

• Case 3: One of the two points (E,F ) is on arc ÂB, while the other point is on arc ÂD.
We have that the number of green points on EF is unchanged, where one green point transits from
red chord AC to red chord AB.

• Case 4: One of the two points (E,F ) is on arc B̂C, while the other point is on arc ĈD.
We have that the number of green points on EF is unchanged, where one green point transits from
red chord CA to red chord CD.

• Case 5: One of the two points (E,F ) is on arc ĈD, while the other point is on arc D̂A.
We have that the number of green points on EF is unchanged, where one green point transits from
red chord DB to red chord DC.

• Case 6: One of the two points (E,F ) is on arc ÂB, while the other point is on arc ĈD.
We have that the number of green points on EF is unchanged, where one green point transits from
red chord AC to red chord AB and one green point transits from red chord BD to red chord CD.

• Case 7: One of the two points (E,F ) is on arc ÂD, while the other point is on arc B̂C.
We have that the number of green points on EF decrements by 2, where one green point on red
chord AC and one green point on red chord BD both vanish.

Combining the 7 cases above indicates that after performing the operation described in the Lemma
to two intersecting red chords once, the number of green points in the configuration is non-increasing.
By the Lemma we have that such operation must terminate after finitely many steps. Consider the
number of green points in the terminating configuration, where any two red chords can’t intersect at
any point inside the circle.

Pick an arbitrary red chord XY in the terminating configuration. Consider the arc X̂Y (either

side works). If the number of red points on X̂Y is an odd number, then we have that the red chord
XY must intersect with some other red chord at a point inside the circle, which does not conform to
our assumption of the terminating configuration. Hence, the number of red points on arc X̂Y must
be an even number. Given that the blue points and the red points are placed alternately on the circle,
we can further deduce that the number of blue points on arc X̂Y must be odd. Hence, the red chord
must intersect with some blue chord at some point inside the circle. Equivalently speaking, any red
chord XY must contain at least one green point. From the arbitrariness of red chord XY , we can
further deduce that the total number of green points in the terminating configuration must be at least
1 · n = n. To show that the minimum n can be attained, consider the following example:

Assume the 4n equally spaced points are A1, A2, · · · , A4n (oriented in a counterclockwise order).
We have that A1A2n+1 is exactly the diameter of the circle, where Ai, A4n+2−i (2 ≤ i ≤ 2n) are
symmetric with respect to the diameter. Do the following coloring:
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• Points A1, A2n+1 are colored blue

• Points A2k, A4n+2−2k (1 ≤ k ≤ n) are colored red

• Points A2k+1, A4n+1−2k (1 ≤ k ≤ n− 1) are colored blue

Then, there are exactly n green points in the configuration, each of which lies on the diameter
A1A2n+1. �

5. (8 pts) Let n be a positive integer, and let a, b, c be real numbers.

(a) (2 pts) Given that a cosx + b cos 2x + c cos 3x ≥ −1 for all reals x, find, with proof, the
maximum possible value of a+ b+ c.

(b) (6 pts) Let f be a degree n polynomial with real coefficients. Suppose that |f(z)| ≤
∣∣f(z) + 2

z

∣∣
for all complex z lying on the unit circle. Find, with proof, the maximum possible value of
f(1).

Solution (a):

Define h(x) = a cosx+ b cos 2x+ c cos 3x. Then, h(x) ≥ −1 for all x ∈ R. Plugging in x = 0, π2 , π
gives us the following three identities:

h(0) = a+ b+ c, h
(π

2

)
= −b, h(π) = −a+ b− c

Hence, 0 = h(0) + 2h(π2 ) + h(π). Note that h(x) ≥ −1 for all x ∈ R, which gives us the following
upper bound:

a+ b+ c = h(0) = −2h
(π

2

)
− h(π) ≥ 3⇒ a+ b+ c ≤ 3.

Moreover, by picking a = 3
2 , b = 1 and c = 1

2 , we have that

h(x) =
3

2
cosx+ cos 2x+

1

2
cos 3x =

3

2
cosx+ (2 cos2 x− 1) +

1

2
(4 cos3 x− 3 cosx)

= 2 cos3 x+ 2 cos2 x− 1 = 2 cos2 x(cosx+ 1)− 1 ≥ −1.

Thus, the maximum possible value of a+ b+ c is 3 . �

Solution (b):

For any z ∈ C, |z| = 1, we have that

|f(z)|2 ≤
∣∣∣∣f(z) +

2

z

∣∣∣∣2 ⇐⇒ f(z)f(z) ≤
(
f(z) +

2

z

)(
f(z) +

2

z

)
⇐⇒ 2

(
zf(z) + zf(z)

)
+ 4 ≥ 0 ⇐⇒ 1

2

(
zf(z) + zf(z)

)
≥ −1.

Letting g(z) = zf(z) = a0z + a1z
2 + · · · + anz

n+1 =
∑n

j=0 ajz
j+1, the problem constraint can be

equivalently written as Re(g(z)) ≥ −1. Moreover, we may write z = cos θ+ i sin θ, (θ ∈ [0, 2π)). Then
the inequality above is

h(θ) := Re(g(z)) = a0 cos(θ) + a1 cos(2θ) + · · · an cos((n+ 1)θ) ≥ −1, θ ∈ [0, 2π)

Define θk = 2kπ
n+2 for 0 ≤ k ≤ n+ 1. By substituting θk’s into h(θ) above and summing the results, we
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deduce that

n+1∑
k=0

h(θk) =

n+1∑
k=0

n∑
j=0

aj cos((j + 1)θk) =

n∑
j=0

aj

n+1∑
k=0

cos((j + 1)θk)

=
n∑
j=0

aj

n+1∑
k=0

Re(ei(j+1)θk) =
n∑
j=0

ajRe

(
n+1∑
k=0

ei(j+1)θk

)

=

n∑
j=0

ajRe

(
n+1∑
k=0

(
ei(j+1)θ1

)k)
=

n∑
j=0

ajRe

(
1− ei(j+1)(n+2)θ1

1− ei(j+1)θ1

)

=
n∑
j=0

ajRe

(
0

1− ei(j+1)θ1

)
= 0.

This yields

f(1) =
n∑
j=0

aj = h(0) = −
n+1∑
k=1

h(θk) ≤ −
n+1∑
k=1

(−1) = n+ 1.

Thus, f(1) ≤ n+ 1. Now, we justify that this maximum is attainable.

Take ak = 2(n+1−k)
n+2 for 0 ≤ k ≤ n. On the one hand,

f(1) =

n∑
j=0

aj =

n∑
j=0

2(n+ 1− j)
n+ 2

=
2

n+ 2
· (n+ 2)(n+ 1)

2
= n+ 1.

On the other hand, for all θ ∈ [0, 2π), we observe that

h(θ) =

n∑
j=0

aj cos((j + 1)θ) =

n∑
j=0

2(n+ 1− j)
n+ 2

cos((j + 1)θ)

=
2

n+ 2
((n+ 1) cos(θ) + n cos(2θ) + · · ·+ 2 cos(nθ) + cos((n+ 1)θ))

=
2

n+ 2

n+1∑
s=1

 s∑
j=1

cos(jθ)

 .

If θ = 0, then we directly see that h(0) =
∑n

j=0 aj = n + 1 ≥ −1. Now we only have to consider the
case when θ 6= 0. For any 1 ≤ s ≤ n+ 1, we have the following identity:

s∑
j=1

cos(jθ) =
1

2 sin( θ2)

s∑
j=1

2 cos(jθ) sin

(
θ

2

)
=

1

2 sin( θ2)

s∑
j=1

(
sin

(
jθ +

θ

2

)
− sin

(
jθ − θ

2

))

=
1

2 sin( θ2)

(
sin

(
sθ +

θ

2

)
− sin

(
θ

2

))
.

7



Plugging in the identity above helps evaluate h(θ):

h(θ) =
2

n+ 2

n+1∑
s=1

sin(sθ + θ
2)− sin( θ2)

2 sin( θ2)
=

1

(n+ 2) sin( θ2)

(
n+1∑
s=0

sin

(
sθ +

θ

2

))
− 1

=
1

(n+ 2) sin2( θ2)

(
n+1∑
s=0

sin

(
sθ +

θ

2

)
sin

(
θ

2

))
− 1

=
1

(n+ 2) sin2( θ2)

(
n+1∑
s=0

cos(sθ)− cos((s+ 1)θ)

)
− 1

=
1− cos((n+ 2)θ)

(n+ 2) sin2( θ2)
− 1 ≥ −1.

This proves that f(1) = n+ 1 can be attained, so the maximum possible value of f(1) is n+ 1 . �

6. (9 pts) Let ABC be a triangle with circumcenter O. The interior bisector of ∠BAC intersects BC
at D. Circle ωA is tangent to segments AB and AC and internally tangent to the circumcircle of
ABC at the point P . Let E and F be the respective points at which the B-excircle and C-excircle
of ABC are tangent to AC and AB. Suppose that lines BE and CF pass through a common point
N on the circumcircle of AEF .

Note: for a triangle ABC, the A-excircle is the circle lying outside triangle ABC that is tangent
to side BC and the extensions of sides AB,AC. The B,C-excircles are defined similarly.

(a) (7 pts) Prove that the circumcircle of PDO passes through N .

(b) (2 pts) Suppose that PD
BC = 2

7 . Find, with proof, the value of cos(∠BAC).
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CB

A

IA

K2

I

K1

Q

A′

B′

C ′

F

E
O

H

M

A′′

D

P

Solution (a):

Note that N is the Nagel point of4ABC. Let H be the orthocenter of4ABC. Since N ∈ (AEF ),
m∠ENF = 180◦ −m∠BAC = m∠BHC, so N lies on (BHC) (i.e., the circumcircle of 4BHC).

Let 4A′B′C ′ be the medial triangle of 4ABC (with A′ on BC, B′ on AC, and C ′ on AB), G be
the centroid of ABC, and I be the incenter of ABC. We first prove a lemma.

Lemma: I is the Nagel Point of 4A′B′C ′ (the line IN is called the Nagel line).

Proof of lemma: Let K1 and K2 be the respective points at which the incircle and excircle of ABC
touches BC, and let Q be the antipode of K1 on the incircle. The incircle and excircle are homothetic
with respect to A, so A,Q,N,K2 are collinear. Since I and A′ are the respective midpoints of K1Q and
K1K2, we have that IA′ ‖ AK2. However, A′C ′ ‖ AC and A′B′ ‖ AB, so ∠C ′A′I ∼= ∠CAN,∠B′A′I ∼=
∠BAN . Hence, the cevian AI in 4A′B′C ′ corresponds to the cevian AN in 4ABC. Likewise, the
cevians BI and CI in 4A′B′C ′ correspond to respective cevians BN and CN in 4ABC. So I is the
Nagel Point of 4A′B′C ′ as desired.
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Thus, consider the homothety H with center G and factor −1
2 . Under H ,

4ABC 7−→ 4A′B′C ′

H 7−→ O by the Euler Line

N 7−→ I by the above lemma and correspondence of similarity

In particular, B′, C ′, O, I are concyclic. However, B′O and C ′O are perpendicular bisectors of sides
AC and AB, so AB′OC ′ is cyclic. Hence, I ∈ (ABC). Since AI bisects ∠BAC, we see that ∠C ′B′I ∼=
∠B′C ′I =⇒ B′I = C ′I. By correspondence of similarity, BN = CN . Thus, N lies on the midpoint
of B̂HC of (BHC).

Reflect A,N,K2 over BC to points A′′,M,K2. Since (BHC) and (ABC) are congruent and

symmetric about BC, M is the midpoint of B̂C on (ABC). Let J denote the composition of the
inversion with center A and radius

√
AB ·AC followed by reflection over AD. It is well known under

J ,

M 7−→ D

A′′ 7−→ O

The A-excircle 7−→ ωA =⇒ K2 7−→ P.

In particular, since A′′,M,K2 are collinear, we see that A,P,D,O are concyclic.

Finally, observe that MD = ND and MO = AO. Since M lies on MO, the perpendicular bisector
of BC, we see that4AOM ∼ 4NDM (they are both isosceles and share the common ∠AMO). Thus,
ND and AO are antiparallel with respect to M , so A,O,N,D are concyclic. Thus, P,D,O,N are
concyclic as desired. �

Solution (b):

We use some results from our solution to (a).

Since I lies on (AB′C ′), we have that I bisects AM . Furthermore, by Fact 5, IM = MC, so
2MC = AM . Since ∠ABC ∼= ∠AMC and AM bisects ∠BAC, we see that 4ABD ∼ 4AMC. Thus,
by the Angle Bisector Theorem, AC

DC = AB
DB = 2. Furthermore, since CM

MD = AB
DB = 2, we observe that D

bisects IM and b+ c = 2a (where we use standard conventions for triangle side lengths). Now, cyclic
quadrilateral APDN and ∠PAD ∼= ∠DAN yields ∠DPN ∼= ∠DNP =⇒ PD = DN . However,
ND = MD, so 2PD = AI. The given condition is therefore AI

BC = 4
7 .

Let α = ∠BAC, r be the inradius of ABC, and R be the circumradius of ABC. We first claim
that r = R(1 − cosα). If we take E′ to be the tangency point of the incircle of ABC and side AB,

then we have that s− a = AE′ = r
tan α

2
= r(1+cosα)

sinα . However, since b+ c = 2a, BC = 2 ·AE′. By the

Law of Sines, BC = 2R sinα as well. Thus, R sinα = r(1+cosα)
sinα =⇒ r = R(1− cosα).

By the Law of Sines and trigonometry, we have that

AI

BC
=

r
sin α

2

2R sinα
=

1− cosα

2 sinα sin α
2

=
tan α

2

2 sin α
2

=
1

2 cos α2
=

4

7
.

Hence, cos α2 = 7
8 =⇒ sin α

2 =
√
15
8 . By the double angle formula, cos(∠BAC) = cosα =

17

32
.
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