
CHMMC 2021-2022

Individual Round Solutions
Problem 1. Fleming has a list of 8 mutually distinct integers between 90 to 99, inclusive. Suppose that the list
has median 94, and that it contains an even number of odd integers. If Fleming reads the numbers in the list
from smallest to largest, then determine the sixth number he reads.

Solution: 96 .
Denote the integers x1 < x2 < · · ·< x8. Since the median is 94,

(x4,x5) ∈ {(93,95),(92,96),(91,97),(90,98)}

However, the last 3 cases cannot happen, since there are 8 distinct integers. Thus, the first five numbers in
increasing order are 90,91,92,93,95. If the sixth number is 97, then the numbers are 90,91,92,93,95,97,98,99
which fails—it contains an odd number of odd integers. Hence, as there are no other choices besides 96, the
sixth number must be 96 .

Problem 2. Find the number of ordered pairs (x,y) of three digit base-10 positive integers such that x− y is a
positive integer, and there are no borrows in the subtraction x− y. For example, the subtraction on the left has
a borrow at the tens digit but not at the units digit, whereas the subtraction on the right has no borrows.

−
4 7 2
1 9 1
2 8 1

−
3 7 9
2 6 3
1 1 6

Solution: 135225 .
We claim that no borrows occur iff every digit of x is greater or equal to every digit of y. If this property holds,
it is clear that no borrows occur. If this property does not hold, consider the first place where the corresponding
digit of x is less than the corresponding digit of y. By minimality, a borrow occurs at that place.
For the leftmost digit, there are

(9
2

)
+ 9 =

(10
2

)
choices, whereas there are

(10
2

)
+ 10 =

(11
2

)
for the remaining

digits since x,y are both three digits. But for each possible x, we subtract 1 from the total number of ordered
pairs, since x− y > 0. There are 900 three-digit numbers, so the answer is

(10
2

)(11
2

)2−900 = 135225 .

Problem 3. Evaluate

1 ·2 ·3−2 ·3 ·4+3 ·4 ·5−4 ·5 ·6+ · · ·+2017 ·2018 ·2019−2018 ·2019 ·2020+1010 ·2019 ·2021.

Solution: 3060300 .
Put n = 1009, and let S be the desired value. Grouping consecutive terms in the above expression—k(k+1)(k+
2)− (k+1)(k+2)(k+3) =−3(k+1)(k+2)—notice that

S =−3(2 ·3+4 ·5+ · · ·+2018 ·2019)+
1
2
(2n+1)(2n+2)(2n+3)

=−3

(
n

∑
i=1

2i(2i+1)

)
+(n+1)(2n+1)(2n+3)

=−6
(

2 · n(n+1)(2n+1)
6

+
n(n+1)

2

)
+(n+1)(2n+1)(2n+3);
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we use “sum of first n square numbers” formula. The last expression simplifies to 3(n+ 1)2, so the answer is
3060300 .

Problem 4. Find the number of ordered pairs of integers (a,b) such that

ab+a+b
a2 +b2 +1

is an integer.

Solution: 3 .
Observe that

(a−b)2 +(a−1)2 +(b−1)2 ≥ 0 =⇒ ab+a+b≤ a2 +b2 +1 =⇒ ab+a+b
a2 +b2 +1

≤ 1

(a+b)2 +(a+1)2 +(b+1)2 ≥ 0 =⇒ −ab−a−b≤ a2 +b2 +1 =⇒ ab+a+b
a2 +b2 +1

≥−1

Hence, ab+a+b
a2+b2+1 ∈ {0,±1}.

If ab+a+b
a2+b2+1 = 1, then (a−b)2 +(a−1)2 +(b−1)2 = 0 which has one real solution (a,b) = (1,1).

If ab+a+b
a2+b2+1 =−1, then (a+b)2 +(a+1)2 +(b+1)2 = 0 which has no real solutions.

If ab+a+b
a2+b2+1 = 0, then ab+ a+ b = 0 =⇒ (a+ 1)(b+ 1) = 1. This diophantine equation has two solutions

(a,b) = (0,0),(a,b) = (−2,−2).
Thus, we have 3 total ordered pairs.

Problem 5. Lin Lin has a 4×4 chessboard in which every square is initially empty. Every minute, she chooses
a random square C on the chessboard, and places a pawn in C if it is empty. Then, regardless of whether C was
previously empty or not, she then immediately places pawns in all empty squares a king’s move away from C.
The expected number of minutes before the entire chessboard is occupied with pawns equals m

n for relatively
prime positive integers m,n. Find m+n.
A king’s move, in chess, is one square in any direction on the chessboard: horizontally, vertically, or diagonally.

Solution: 28 .
Subdivide the chessboard into four 2×2 quadrants Q1,Q2,Q3,Q4. Let C ∈ Qi be a corner square of the chess-
board. At any given time, there is a pawn on C iff Lin Lin has chosen a square in Qi at some point in time.
Hence, it is necessary and sufficient for Lin Lin to have chosen at least one square from each of Q1,Q2,Q3,Q4
for the chessboard to be filled with pawns.
Let f (n) denote the expected number of minutes until Lin Lin has chosen n quadrants. With n quadrants chosen,
the next square Lin Lin chooses corresponds to a new quadrant with probability 4−n

4 . This yields the recursion
f (n+ 1) = 4−n

4 f (n)+ n
4 f (n+ 1)+ 1, for n = 0,1,2,3. Clearly f (0) = 0, so solving this linear system yields

f (4) = 4(1
1 +

1
2 +

1
3 +

1
4) =

25
3 , so the answer is 28 .

Problem 6. Let P(x) = x5−3x4 +2x3−6x2 +7x+3 and α1, . . . ,α5 be the roots of P(x). Compute

5

∏
k=1

(α3
k −4α

2
k +αk +6).

Solution: −2688 .
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Factoring P(x) = ∏
5
k=1(x−αk),x3−4x2 + x+6 = (x−2)(x+1)(x−3), the desired value comes out to be

5

∏
k=1

(αk−2)(αk +1)(αk−3) = (−1)15
5

∏
k=1

(2−αk)(−1−αk)(3−αk) =−P(2)P(−1)P(3) = −2688 .

Problem 7. Rectangle AXCY with a longer length of 11 and square ABCD share the same diagonal AC. Assume
B,X lie on the same side of AC such that triangle BXC and square ABCD are non-overlapping. The maximum
area of BXC across all such configurations equals m

n for relatively prime positive integers m,n. Compute m+n.

Solution: 137 .

A

B

C

D

X

Y

Hexagon ABXCDY is clearly “convex” and cyclic. Set AB = BC = a, so AC = a
√

2. We can apply Ptolemy on
ABXC:

a ·XC+a
√

2 ·XB = 11a =⇒ XC+XB
√

2 = 11.

By AM-GM inequality, XC+XB
√

2≥ 2
√

XC ·XB
√

2, so 121
√

2
8 ≥ XC ·XB.

Noting ∠CXB = 180◦−∠BAC = 135◦, we compute [BXC] = 1
2 ·XB ·XC · sin(∠CXB) ≤ 121

16 and equality is
achievable when XC = 11

2 . The answer is 137 .

Problem 8. Earl the electron is currently at (0,0) on the Cartesian plane and trying to reach his house at point
(4,4). Each second, he can do one of three actions: move one unit to the right, move one unit up, or teleport to
the point that is the reflection of its current position across the line y= x. Earl cannot teleport in two consecutive
seconds, and he stops taking actions once he reaches his house.
Earl visits a chronologically ordered sequence of distinct points (0,0), . . . ,(4,4) due to his choice of actions.
This is called an Earl-path. How many possible such Earl-paths are there?

Solution: 3584 .
Consider the continuous (i.e., no teleporting) Earl-paths from (0,0) to (4,4) without going over the line y = x.
This is simply the 4th Catalan number 1

5

(8
4

)
. We call such path a Catalan path.

Any (possibly discontinuous) Earl-path P may be considered as a union of 8 unit line segments. Consider the
following transformation: for every segment in P over y = x, reflect it across y = x. The image of P under this
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transformation is necessarily an Earl-path that does not go over y = x, hence a Catalan path. Thus, it suffices to
choose which of the 8 segments are above the line y = x, with 2 choices for each segment, over the collection
of all Catalan paths.

Thus, the final answer is 28

5 ·
(8

4

)
= 3584 .

Problem 9. Let P(x) be a degree-2022 polynomial with leading coefficient 1 and roots cos( 2πk
2023) for k =

1, . . . ,2022 (note P(x) may have repeated roots). If P(1) = m
n where m and n are relatively prime positive

integers, then find the remainder when m+n is divided by 100.

Solution: 33 .
The task is to compute

2022

∏
k=1

(
1− cos

(
2πk
2023

))
.

Let A0A1 . . .A2022 be a regular 2023-gon inscribed in a unit circle centered at O. By the Law of Cosines on
4A0OAk,

1− cos
(

2πk
2023

)
=

A0A2
k

2
.

Put ζ = e
2πi

2023 ∈ C; we have A0Ak = |1−ζ k|, so the desired product is

1
22022

(
2022

∏
k=1

A0Ak

)2

=
1

22022

(
2022

∏
k=1
|1−ζ

k|

)2

=
1

22022

∣∣∣∣∣2022

∏
k=1

(1−ζ
k)

∣∣∣∣∣
2

.

The polynomial with roots ζ , . . . ,ζ2022 is f (x) = x2022 + · · ·+ x+1, so

2023 = | f (1)|=

∣∣∣∣∣2022

∏
k=1

(1−ζ
k)

∣∣∣∣∣ =⇒ 1
22022

∣∣∣∣∣2022

∏
k=1

(1−ζ
k)

∣∣∣∣∣
2

=
20232

22022 .

Note 20232 ≡ 29 (mod 100) and by Euler’s Theorem 22022 ≡ 22 ≡ 4 (mod 25). Then, 22022 ≡ 4 (mod 100)
and the answer is 33 .

Problem 10. A randomly shuffled standard deck of cards has 52 cards, 13 of each of the four suits. There are
4 Aces and 4 Kings, one of each of the four suits. One repeatedly draws cards from the deck until one draws
an Ace. Given that the first King appears before the first Ace, what is the expected number of cards one draws
after the first King and before the first Ace?

Solution: 424 .
The idea is that the Aces and Kings form 8 dividers which partition the remaining 44 cards into 9 classes. The
expected number of cards per class equals 44

9 . Then, supposing that there are k ≥ 1 Kings before the first Ace,
the expected number of cards drawn after the first King and before stopping is 44k

9 + k−1.
Let C be the number of cards drawn between the first King and the first Ace, K be the number of Kings before
the first Ace, and A the event that the first King appears before the first Ace. The number of permutations of 4
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Kings and 4 Aces with k Kings before the first Ace is
(7−k

3

)
. Hence, P(K = k) = (7−k

3 )
(8

4)
, so

E[C|A] =
4

∑
k=1

P(K = k|A)E(C|K = k,A) =
4

∑
k=1

P(K = k)
1
2

·
(

44k
9

+ k−1
)

=−1+
106
9
·

4

∑
k=1

k
(7−k

3

)(8
4

)
(apply hockey stick identity) =−1+

106
9
·
(8

5

)(8
4

)
=

379
45

.

The answer is 424 .

Problem 11. The following picture shows a beam of light (dashed line) reflecting off a mirror (solid line). The
angle of incidence is marked by the shaded angle; the angle of reflection is marked by the unshaded angle.

The sides of a unit square ABCD are magically distorted mirrors such that whenever a light beam hits any of the
mirrors, the measure of the angle of incidence between the light beam and the mirror is a positive real constant
θ degrees greater than the measure of the angle of reflection between the light beam and the mirror. A light
beam emanating from A strikes CD at W1 such that 2DW1 =CW1, reflects off of CD and then strikes BC at W2
such that 2CW2 = BW2, reflects off of BC, etc. To this end, denote Wi the ith point at which the light beam
strikes ABCD.
As i grows large, the area of WiWi+1Wi+2Wi+3 approaches m

n , where m and n are relatively prime positive
integers. Compute m+n.

Solution: 39
Let A = W0. The difference between the angle of incidence and the angle of reflection θ is clearly ∠AW1D−
∠W2W1C = tan−1(3)− tan−1(1

2). However, tan−1(3)− tan−1(1
2) = tan−1(2)− tan−1(1

3) =∠W1W2C−∠W3W2B.
Since ∠W1W2C = tan−1(2), we see that ∠W3W2B = tan−1(1

3),∠W2W3B = tan−1(3). This suggests a pattern of
similar right triangles. By drawing the path W0 →W1 →W2 →W3 → . . . and repeatedly chasing angles, we
observe that

DW4i

W4i+1D
=

BW4i+2

W4i+3B
= 3

CW4i+1

W4i+2C
=

AW4i+3

W4i+4A
= 2

for all nonnegative integers i. In other words, we have the following two equivalence classes of similar right
triangles:

{4W4iDW4i+1,4W4i+2BW4i+3}i≥0,{4W4i+1CW4i+2,4W4i+3AW4i+4}i≥0.

Define the sequence:
b1,b2,b3,b4, · · ·=CW2,AW4,CW6,AW8, . . .
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The above ratios, along with the fact ABCD is a unit square, allow us to compute any bi. In particular, a
general length chasing process yields the recursive formula bi+1 =

2+bi
6 . An induction argument implies that

bi =
6i−1

3·6i−1·5 .

For j = 0,1,2,3, denote W∞,0 = limi→∞W4i+ j. The formula for bi implies AW∞,0 = CW∞,2 =
2
5 . Similarly, we

may show DW∞,1 = BW∞,1 =
1
5 . By continuity of area of a quadrilateral,

[W∞,0W∞,1W∞,2W∞,3] = 1− [W∞,1DW∞,0]− [W∞,2CW∞,1]− [W∞,3BW∞,2]− [W∞,0AW∞,3]

= 1− 1
2
·
(

3
5
· 1

5
+

4
5
· 2

5
+

3
5
· 1

5
+

4
5
· 2

5

)
=

14
25

and the answer is 39 .

Problem 12. For any positive integer m, define ϕ(m) the number of positive integers k ≤ m such that k and m
are relatively prime. Find the smallest positive integer N such that

√
ϕ(n)≥ 22 for any integer n≥ N.

Solution: 2311 .

For arbitrary n∈N, we write its prime factorization n = qβ1
1 qβ2

2 . . .qβt
t throughout this solution, where the primes

q1, . . . ,qt are in increasing order.
Lemma 1: For any integer n > 2, ϕ(n) 6= 481,482,483.
Proof 1: First note gcd(a,n) = 1 ⇐⇒ gcd(n−a,n) = 1 for all integers 1≤ a < n, implying ϕ(n)≡ 0 (mod 2)
if ϕ(n)> 1, so ϕ(n) 6= 481,483.
Now assume on the contrary there is some integer n such that ϕ(n) = 482 = 2 ·241 (note 241 is prime). Since

ϕ(n) =
t

∏
j=1

qβ j−1
j (q j−1),

241 necessarily divides one of q j,q j − 1. If 241 | q j, then 241 = q j, so 2412 | n =⇒ ϕ(n) ≥ q j(q j − 1) =
241 ·240, a contradiction. If 241 | q j−1, then q j = 1+241k for some positive integer k. However, q j 6= 242,483
(for k = 1,2) as those numbers are composite; thus, ϕ(n) ≥ q j− 1 ≥ 241 · 3 > 482, a contradiction. Hence,
ϕ(n) 6= 482. �
Let p1 = 2, p2 = 3, p3 = 5, . . . be the prime numbers listed in increasing order, and define xs = p1 p2 . . . ps.
Lemma 2: For all integers n≥ xs, we have ϕ(n)≥ ϕ(xs) with equality iff n = xs.

Proof 2: On the one hand, suppose ϕ(n)
n > ϕ(xs)

xs
. By multiplying these inequalities, we obtain ϕ(n)> ϕ(xs), as

needed.
On the other hand, suppose

(q1−1)(q2−1) . . .(qt −1)
q1q2 . . .qt

=
ϕ(n)

n
≤ ϕ(xs)

xs
=

(p1−1)(p2−1) . . .(ps−1)
p1 p2 . . . ps

.

Note qi ≥ pi =⇒ 1≥ qi−1
qi
≥ pi−1

pi
; hence, t ≥ s necessarily. Thus,

ϕ(n)≥ (q1−1) . . .(qt −1)≥ (q1−1) . . .(qs−1)≥ (p1−1) . . .(ps−1) = ϕ(xs)

with equality iff t = s and qi = pi for all 1≤ i≤ s. �
Finally, note ϕ(x5) = ϕ(2 ·3 ·5 ·7 ·11) = ϕ(2310) = 480. The above two lemmas together imply ϕ(n) ≥ 484
for all integers n > 2310, so the answer is 2311 .
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Problem 13. Let n be a fixed positive integer, and let {ak} and {bk} be sequences defined recursively by

a1 = b1 = n−1

a j = j(n− j+1)a j−1, j > 1

b j = n j2b j−1 +a j, j > 1

When n = 2021, then a2021 + b2021 = m · 20172 for some positive integer m. Find the remainder when m is
divided by 2017.

Solution: 1043 .
By induction on j, it is not hard to deduce the following formulas for a j,b j:

a j =
((n−1)!)2 j!

n!(n− j)!

b j =
j

∑
k=1

( j!)2

(k!)2 n j−kak.

In the cases of an,bn, the above formulas simplify to the following

an = ((n−1)!)2

bn = ((n−1)!)2
n

∑
k=1

(
n
k

)
nn−k = ((n−1)!)2((n+1)n−nn),

as (n+1)n−nn = ∑
n
k=1
(n

k

)
nn−k by binomial expansion. Considering the fact n = 2021, we have a2021+b2021 =

(2020!)2(1+20222021−20212021). Hence,

m = (2016!)2(2018 ·2019 ·2020)2 · (1+20222021−20212021)

=⇒ m≡ (−1)2(1 ·2 ·3)2(1+55−45)≡ 1043 (mod 2017)

by applying Wilson’s and Fermat’s theorems to the prime p = 2017.

Problem 14. Consider the quadratic polynomial g(x) = x2 + x+ 1020100. A positive odd integer n is called
g-friendly if and only if there exists an integer m such that n divides 2 · g(m) + 2021. Find the number of
g-friendly positive odd integers less than 100.

Solution: 18 .
Clearly n = 1 is a solution, so now suppose 3≤ n < 100. Since n is odd, n | 2g(m)+2021 ⇐⇒ n | 2(2g(m)+
2021). Note 1020100 = 10102, so

2(2g(m)+2021) = 2(2m2 +2m+2 ·10102 +2021)

= 4m2 +4m+4 ·10102 +4 ·1010+2

= 4m2 +4m+(2 ·1010+1)2 +1

= (2m+1)2 +20212

Suppose that gcd(n,2021)> 1. Noting 2021 = 43 ·47, we have n = 43,47 and n | 2021. We may take m = 21
or 23 respectively, so n = 43,47 are both g-friendly.
Otherwise, this means for all primes p | n,

1 =

(
−20212

p

)
=

(
−1
p

)(
2021

p

)2

=

(
−1
p

)
= (−1)

p−1
2 .
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Therefore, p≡ 1 (mod 4), and this must hold for all p | n.
If n is a product of distinct 1 (mod 4) primes—perhaps a single prime—then it follows by Chinese Re-
mainder Theorem that n is g-friendly. We can enumerate the cases—if n is a single prime, then it must be
5,13,17,29,37,41,53,61,73,89,93,97, and if n is composite, then it must be 5 ·13,5 ·17. So there are 14 cases
here.
Otherwise, if νp(n) ≥ 2 for some prime p, noting p ≡ 1 (mod 4) is still needed and n < 100 it follows that
n = 25. Note we can take m = 1, and then we have (2 ·1+1)2 +20212 = 32 +20212 ≡ 9+41≡ 0 (mod 25).
Hence, 25 is g-friendly.
Thus, there are 1+2+14+1 = 18 g-friendly positive odd integers less than 100.

Problem 15. Let ABC be a triangle with AB < AC, inscribed in a circle with radius 1 and center O. Let H
be the intersection of the altitudes of ABC. Let lines OH,BC intersect at T . Suppose there is a circle passing
through B,H,O,C. Given cos(∠ABC−∠BCA) = 11

32 , then TO =
m
√

p
n for relatively prime positive integers m,n

and squarefree positive integer p. Find m+n+ p.

Solution: 46 .

A

B CD

H

O

M

N

T

Note BHOC cyclic means 2A = ]BOC = ]BHC = 180◦−A, so A = 60◦. The system of equations

cos(B−C) = cosBcosC+ sinBsinC =
11
32

cos(B+C) = cosBcosC− sinBsinC = cos(120◦) =−1
2

implies cosBcosC =− 5
64 , so4ABC has an obtuse angle at B. Thus, H and O necessarily lie on opposite sides

of BC.
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By angle chasing, ]HAB = ]CAO = B− 90◦. Hence, ]HAO = 2B− 120◦ = B−C. Note AH = 2RcosA =
1 = AO. Let N be the midpoint of HO, so

OH = 2HN = 2AH sin
(

B−C
2

)
= 2

√
1− cos(B−C)

2
=

√
21
4

.

OTOH, let D = AH ∩BC. Then, ]BHD =C, so

HD = BH cos(]BHD) = 2Rcos(180◦−B)cosC =
5
32

.

To finish, let M be the midpoint of BC, and so OM = RsinA = 1
2 . Then, we may apply proportionality with

respect to the similarity4T HD∼4TOM, which yields TO =
√

21
4 ·

1
2

1
2+

5
32
= 4

√
21

21 . The answer is 46 .
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