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Proof Round Solutions
Problem 1. /4] Find all ordered triples (a,b,¢) of real numbers such that

(a=b)(b—c)+(b—c)(c—a)+(c—a)(a—b)=0.

Solution:

By factoring, we obtain (a —b) (b —c¢) = (c —a)? and the same cyclic expressions. Thus, (¢ —a)* = (a —b)* =
(b—c)* = (a—b)(b—c)(c—a). Since a,b,c are reals, we have that a —b = b — ¢ = ¢ — a. If this common
value were positive, then a > b,b > ¢,c > a, a contradiction. Likewise, this common value cannot be negative.
Thus, a = b = ¢, so all such triples (a,b,c) necessarily take the form (z,7,7),t € R, and it is clear that all of
these triples work. [J



Problem 2. /4] For any positive integer n, let p(n) be the product of its digits in base-10 representation. Find

the maximum possible value of @ over all integers n > 10.

9

ﬁ 8
Let S; be the set of all (base-10) d-digit positive integers. For n = agay_1...a; € Sy, we claim @ 1S max-

imized, over all such n by choosing n =99...9. To this end, suppose n € Sy, all its digits are nonzero (as

Solution:

any number with 0 as a digit clearly does not maximize @), and at place ¢ the digit of n is @, < 9. Then, by
replacing a, with 9, p(n) increases by a factor of a%, whereas n increases by the factor

adad_l...9...a1 9
<7
agqdg—1...4¢...04]1 a;

This inequality may be proven by cross-multiplying and noting a; < 9. Hence, such n does not maximize

Now, over 3,953, ..., we must find the largest of @ for n =99,999, .... For ng = 10¢ — 1, we have that

p(na) 9¢

ng 104 —1

is strictly decreasing in d, since the numerator increases by a factor of 9 and the denominator increases by a

factor of > 10 for each unit increment of d. It follows that the maximum of @ over all integers n > 10 is

99 2
99 11 .




Problem 3. /6] Let F(xy,...,x,) be a polynomial with real coefficients in n > 1 “indeterminate” variables
X1,...,X%,. We say that F is n-alternating if for all integers 1 <i < j <n,

F(Xt, o)Xy Xy X)) = —F (X1, Xj, o Xy, X)),

i.e. swapping the order of indeterminates x;,x; flips the sign of the polynomial. For example, x%xz —x%xl is
2-alternating, whereas x;xyx3 + 2x,x3 is not 3-alternating.

Note: two polynomials P(xy,...,x,) and Q(x1,...,x,) are considered equal if and only if each monomial con-
stituent ocx]f‘ ... xkn of P appears in Q with the same coefficient o, and vice versa. This is equivalent to saying
that P(xy,...,x,) = 0 if and only if every possible monomial constituent of P has coefficient 0.

(1) [2] Compute a 3-alternating polynomial of degree 3.

(2) [4] Prove that the degree of any nonzero n-alternating polynomial is at least (g)

Solution:

(1) Consider the degree 3 polynomial x%xz +X%X3 —|—x§x1 —xlx% —xzx§ - xyc%. It is 3-alternating, because, for
instance, the swap of x1,x; yields the polynomial xlx% +x2x§ —I—X3x% — x%xz — x%)g — x%xl. This polynomial is
cyclic in x1,x2,x3, so the swaps of x,x3 and x3,x; act similarly.

(2) Let € be the collection of all monomials of the form x’l“ .. .xﬁ", where ki, ...k, are non-negative integers.
For any permutation 6 : {1,...,n} — {1,...,n}, there is a natural action € — € via x\' ... x% x];‘(l) . .x/;”(n).

Since o is a bijection, the natural action associated to o is also bijective.

Suppose that for some monomial T = xlf' ...xkn there is an equality k; = k ; for some indices 1 <i < j<n.
Then, 91 is invariant under the action of transposition (i j). By bijectivity, this action maps no other monomials
to 9. Hence, if the coefficient of 9T in F is nonzero, then the coefficient of 9t in

F(X1,o Xy, Xy, X)) FF (X0, 00Xy Xy Xp)

is also nonzero. Thus, if F is n-alternating, then the coefficient of 91 is zero. Therefore, if I = )cllcl xﬁl
is a monomial of nonzero coefficient in an n-alternating polynomial F, then it is necessary that ki, ...k, are
mutually distinct. It follows k; +---+k, is atleast0+14---4+n—1= (g), completing the proof. [J



Problem 4. [5] Show that for any three positive integers a,m,n such that m divides n, there exists a positive
integer k < - such that gcd(a,m) = ged(a +km,n).

Solution:

It suffices to prove this statement for the case gcd(a,m) = 1. To see why, we can simply divide any a,m,n by

gcd(a,m) and obtain whole numbers @’ = sedlam” m = scd(am - and n' = acd(azm Such that m’ | n’. In particular,
2= ,’:1—/, and for integers 1 < k < "7“7// we have ged(d' + km',n') = % which equals 1 iff ged(a,m) =

gcd(a + km,n). From here we assume that gcd(a,m) = 1; we aim to construct an integer k satisfying the
problem condition.

Let k be the product of all primes dividing #» but not a or m (we set k = 1 whenever there are no such primes).
Notice km < n. Moreover, by construction, gcd(a,km) = 1 and in fact every prime p dividing n divides exactly
one of a or km. Thus, for every prime p | n, we have p 1 a+ km. Hence, gcd(a+km,n) = 1. O



Problem 5. /7] Find all functions f : R — R such that

U@+ F0)?) = FR)*+y2 1) .
Here R denotes the usual real numbers.

Solution:

Let P(x,y) denote the given assertion. We claim the only solution to the functional equation is f(x) = 0 which
clearly works.

First, P(x,0) = £(f(x)+ £(0)?) = f(x)".

Now, for all reals y, z

P(f(2)+ £(0)%y) = £+ f0)) = F(f2)+ £(0)2)+y f) = f(2)* +y*f )

By symmetry, this implies that f(z)* +y>f(y)® = f(y)* + 22 f(z)* for all reals y,z. Taking y = 0 gives f(z)* =
O +22f(2)°.

Consider z = f(w) + £(0)? for some real w. Plugging this into the above gives

Fw)E = F(Fw) + £(0)2)* = £(0)* + (F(w) + £(0)*)* f(w)®
= 2f(w)"f(0)>+ f(W)° £(0)* + £(0)* = 0.

First, suppose f # 0 always. Then the above equation implies that 2f(w)” + f(w)¢ £(0)? 4 £(0)> = 0 for all
reals w. Therefore all the possible values f(w) that f can take on are contained in set of roots of the above
degree 7 polynomial.

Now as we have f(f(x) + f(0)?) = f(x)?, if some value that f takes on has magnitude > 1, we can repeatedly
apply this relation to see that f attains over 7 different distinct values. The same holds if f takes on a value that
has magnitude < 1. Hence f(x) = £1 for each individual real x.

By taking w = 0, we have that 2£(0)” + f(0)® + £(0)*> = 0. We have £(0) = %1, and f(0) = 1 fails, so
£(0) = —1. Therefore, the polynomial equation 2f(w)” 4 f(w)® 41 = 0 holds for all reals w. Again f(w) = 1
for each individual w, yet f(w) = 1 does not satisfy the above polynomial equation, so f(w) = —1 for all reals
w. The solution f(x) = —1 clearly fails the original functional equation.

Next, suppose there exists some ¢ with f(c) = 0. Taking w = ¢ above gives f(0) = 0. Now f(z)* = 22f(z)*
means f(z) = 0 or z2 for each individual real z. Say there is some x # 0 where f(x) = x>. By P(x,x), we have
either 0 or (x*> +x*)2 must equal f(x> +x*) = f(f(x) + f(x)?) = f(x)* + x> f(x)> = x* + 2P, and both cases are
impossible.

In conclusion, the only solution is f(x) = 0. O



Problem 6. [7] Let ABC be an acute triangle with orthocenter H. A point L # A lies on the plane of ABC such
that HL 1. AL and LB : LC = AB : AC. Suppose M; # B lies on BL such that HM; | BM; and M, # C lies on
CL such that HM, | CM,. Prove that M, M, bisects AL.

Solution:

Denote D, E, and F the feet of the A-, B-, and C-altitudes of AABC; we clearly have L € (HEAF),M; €
(HFBD),M; € (HDCE). Let A’ be the midpoint of BC.

Lemma 1: L € AA’,(BHC).
Proof 1: By definition L lies on the A-Apollonius circle of AABC. Note

BE  sin(/CAB)-AB _AB
CF  sin(ZCAB)-AC  AC’

so the spiral center of BE and CF also lies on the A-Apollonius circle. Moreover, the spiral center of BC and
EF lies on (HEAF) and is not A. By properties of spiral similarities these spiral centers coincide. We deduce L
is the Miquel point of self-intersecting cyclic quadrilateral BCFE with circumcenter A’. The conclusion follows
by well-known properties of Miquel points. ll

From this lemma we make a few key observations. By the “three-tangents lemma” AE and AF are tangent to
(HEAF), i.e. quadrilateral AFLE is harmonic. Moreover, the homothety of center A and factor  maps (BHC)
to (DEFA’) and L to the midpoint X of AL, i.e. X € (DEFA’).

We finish by showing M}, M, € DX. Since AFLE is harmonic, EF is the E-symmedian in ALEA, so £FAL =
AFEL = {AEX and ANAFE ~ AXLE directly. Note A’,C,E,L are concyclic by inversion of center A and



radius VAH -AD. Thereby,

AXDA' = AXEA' = AXEL+ {LEA’ = {AEF + {LEA’
= ADEC + LLCA' = ADM,C + {M>CD = {M>DB

as needed. A similar argument shows < XDA' = £M,DB. [
Remark: L is the A-Humpty point of AABC; X is the A-Dumpty point of AAEF.



