CHMMC 2021-2022

Proof Round Solutions

Problem 1. [4] Find all ordered triples (a, b, c) of real numbers such that

$$
(a-b)(b-c)+(b-c)(c-a)+(c-a)(a-b)=0 .
$$

Solution:

By factoring, we obtain $(a-b)(b-c)=(c-a)^{2}$ and the same cyclic expressions. Thus, $(c-a)^{3}=(a-b)^{3}=$ $(b-c)^{3}=(a-b)(b-c)(c-a)$. Since a, b, c are reals, we have that $a-b=b-c=c-a$. If this common value were positive, then $a>b, b>c, c>a$, a contradiction. Likewise, this common value cannot be negative. Thus, $a=b=c$, so all such triples (a, b, c) necessarily take the form $(t, t, t), t \in \mathbb{R}$, and it is clear that all of these triples work.

Problem 2. [4] For any positive integer n, let $p(n)$ be the product of its digits in base-10 representation. Find the maximum possible value of $\frac{p(n)}{n}$ over all integers $n \geq 10$.
Solution: $\frac{9}{11}$.
Let S_{d} be the set of all (base-10) d-digit positive integers. For $n=a_{d} a_{d-1} \ldots a_{1} \in S_{d}$, we claim $\frac{p(n)}{n}$ is maximized, over all such n by choosing $n=\underline{99 \ldots 9}$. To this end, suppose $n \in S_{d}$, all its digits are nonzero (as any number with 0 as a digit clearly does not maximize $\frac{p(n)}{n}$), and at place t the digit of n is $a_{t}<9$. Then, by replacing a_{t} with $9, p(n)$ increases by a factor of $\frac{9}{a_{t}}$, whereas n increases by the factor

$$
\frac{a_{d} a_{d-1} \ldots 9 \ldots a_{1}}{\underline{a_{d} a_{d-1} \ldots a_{t} \ldots a_{1}}}<\frac{9}{a_{t}}
$$

This inequality may be proven by cross-multiplying and noting $a_{t}<9$. Hence, such n does not maximize $\frac{p(n)}{n}$. Now, over S_{2}, S_{3}, \ldots, we must find the largest of $\frac{p(n)}{n}$ for $n=99,999, \ldots$. For $n_{d}=10^{d}-1$, we have that

$$
\frac{p\left(n_{d}\right)}{n_{d}}=\frac{9^{d}}{10^{d}-1}
$$

is strictly decreasing in d, since the numerator increases by a factor of 9 and the denominator increases by a factor of >10 for each unit increment of d. It follows that the maximum of $\frac{p(n)}{n}$ over all integers $n \geq 10$ is $\frac{9.9}{99}=\frac{9}{11}$.

Problem 3. [6] Let $F\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial with real coefficients in $n>1$ "indeterminate" variables x_{1}, \ldots, x_{n}. We say that F is n-alternating if for all integers $1 \leq i<j \leq n$,

$$
F\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)=-F\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right),
$$

i.e. swapping the order of indeterminates x_{i}, x_{j} flips the sign of the polynomial. For example, $x_{1}^{2} x_{2}-x_{2}^{2} x_{1}$ is 2 -alternating, whereas $x_{1} x_{2} x_{3}+2 x_{2} x_{3}$ is not 3 -alternating.
Note: two polynomials $P\left(x_{1}, \ldots, x_{n}\right)$ and $Q\left(x_{1}, \ldots, x_{n}\right)$ are considered equal if and only if each monomial constituent $\alpha x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ of P appears in Q with the same coefficient α, and vice versa. This is equivalent to saying that $P\left(x_{1}, \ldots, x_{n}\right)=0$ if and only if every possible monomial constituent of P has coefficient 0 .
(1) [2] Compute a 3-alternating polynomial of degree 3 .
(2) [4] Prove that the degree of any nonzero n-alternating polynomial is at least $\binom{n}{2}$.

Solution:

(1) Consider the degree 3 polynomial $x_{1}^{2} x_{2}+x_{2}^{2} x_{3}+x_{3}^{2} x_{1}-x_{1} x_{2}^{2}-x_{2} x_{3}^{2}-x_{3} x_{1}^{2}$. It is 3 -alternating, because, for instance, the swap of x_{1}, x_{2} yields the polynomial $x_{1} x_{2}^{2}+x_{2} x_{3}^{2}+x_{3} x_{1}^{2}-x_{1}^{2} x_{2}-x_{2}^{2} x_{3}-x_{3}^{2} x_{1}$. This polynomial is cyclic in x_{1}, x_{2}, x_{3}, so the swaps of x_{2}, x_{3} and x_{3}, x_{1} act similarly.
(2) Let \mathscr{C} be the collection of all monomials of the form $x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$, where k_{1}, \ldots, k_{n} are non-negative integers. For any permutation $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$, there is a natural action $\mathscr{C} \rightarrow \mathscr{C}$ via $x_{1}^{k_{1}} \ldots x_{n}^{k_{n}} \mapsto x_{\sigma(1)}^{k_{1}} \ldots x_{\sigma(n)}^{k_{n}}$. Since σ is a bijection, the natural action associated to σ is also bijective.
Suppose that for some monomial $\mathfrak{M}=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$, there is an equality $k_{i}=k_{j}$ for some indices $1 \leq i<j \leq n$. Then, \mathfrak{M} is invariant under the action of transposition $(i j)$. By bijectivity, this action maps no other monomials to \mathfrak{M}. Hence, if the coefficient of \mathfrak{M} in F is nonzero, then the coefficient of \mathfrak{M} in

$$
F\left(x_{1}, \ldots, x_{i}, \ldots, x_{j}, \ldots, x_{n}\right)+F\left(x_{1}, \ldots, x_{j}, \ldots, x_{i}, \ldots, x_{n}\right)
$$

is also nonzero. Thus, if F is n-alternating, then the coefficient of \mathfrak{M} is zero. Therefore, if $\mathfrak{M}=x_{1}^{k_{1}} \ldots x_{n}^{k_{n}}$ is a monomial of nonzero coefficient in an n-alternating polynomial F, then it is necessary that k_{1}, \ldots, k_{n} are mutually distinct. It follows $k_{1}+\cdots+k_{n}$ is at least $0+1+\cdots+n-1=\binom{n}{2}$, completing the proof.

Problem 4. [5] Show that for any three positive integers a, m, n such that m divides n, there exists a positive integer $k \leq \frac{n}{m}$ such that $\operatorname{gcd}(a, m)=\operatorname{gcd}(a+k m, n)$.

Solution:
It suffices to prove this statement for the case $\operatorname{gcd}(a, m)=1$. To see why, we can simply divide any a, m, n by $\operatorname{gcd}(a, m)$ and obtain whole numbers $a^{\prime}=\frac{a}{\operatorname{gcd}(a, m)}, m^{\prime}=\frac{m}{\operatorname{gcd}(a, m)}$, and $n^{\prime}=\frac{n}{\operatorname{gcd}(a, m)}$ such that $m^{\prime} \mid n^{\prime}$. In particular, $\frac{n}{m}=\frac{n^{\prime}}{m^{\prime}}$ and for integers $1 \leq k \leq \frac{n^{\prime}}{m^{\prime}}$ we have $\operatorname{gcd}\left(a^{\prime}+k m^{\prime}, n^{\prime}\right)=\frac{\operatorname{gcd}(a+k m, n)}{\operatorname{gcd}(a, m)}$ which equals 1 iff $\operatorname{gcd}(a, m)=$ $\operatorname{gcd}(a+k m, n)$. From here we assume that $\operatorname{gcd}(a, m)=1$; we aim to construct an integer k satisfying the problem condition.
Let k be the product of all primes dividing n but not a or m (we set $k=1$ whenever there are no such primes). Notice $k m \leq n$. Moreover, by construction, $\operatorname{gcd}(a, k m)=1$ and in fact every prime p dividing n divides exactly one of a or $k m$. Thus, for every prime $p \mid n$, we have $p \nmid a+k m$. Hence, $\operatorname{gcd}(a+k m, n)=1$.

Problem 5. [7] Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f\left(f(x)+f(y)^{2}\right)=f(x)^{2}+y^{2} f(y)^{3}
$$

Here \mathbb{R} denotes the usual real numbers.

Solution:

Let $P(x, y)$ denote the given assertion. We claim the only solution to the functional equation is $f(x) \equiv 0$ which clearly works.
First, $P(x, 0) \Longrightarrow f\left(f(x)+f(0)^{2}\right)=f(x)^{2}$.
Now, for all reals y, z

$$
P\left(f(z)+f(0)^{2}, y\right) \Longrightarrow f\left(f(z)^{2}+f(y)^{2}\right)=f\left(f(z)+f(0)^{2}\right)^{2}+y^{2} f(y)^{3}=f(z)^{4}+y^{2} f(y)^{3}
$$

By symmetry, this implies that $f(z)^{4}+y^{2} f(y)^{3}=f(y)^{4}+z^{2} f(z)^{3}$ for all reals y, z. Taking $y=0$ gives $f(z)^{4}=$ $f(0)^{4}+z^{2} f(z)^{3}$.
Consider $z=f(w)+f(0)^{2}$ for some real w. Plugging this into the above gives

$$
\begin{aligned}
f(w)^{8} & =f\left(f(w)+f(0)^{2}\right)^{4}=f(0)^{4}+\left(f(w)+f(0)^{2}\right)^{2} f(w)^{6} \\
& \Longrightarrow 2 f(w)^{7} f(0)^{2}+f(w)^{6} f(0)^{4}+f(0)^{4}=0
\end{aligned}
$$

First, suppose $f \neq 0$ always. Then the above equation implies that $2 f(w)^{7}+f(w)^{6} f(0)^{2}+f(0)^{2}=0$ for all reals w. Therefore all the possible values $f(w)$ that f can take on are contained in set of roots of the above degree 7 polynomial.
Now as we have $f\left(f(x)+f(0)^{2}\right)=f(x)^{2}$, if some value that f takes on has magnitude >1, we can repeatedly apply this relation to see that f attains over 7 different distinct values. The same holds if f takes on a value that has magnitude <1. Hence $f(x)= \pm 1$ for each individual real x.
By taking $w=0$, we have that $2 f(0)^{7}+f(0)^{8}+f(0)^{2}=0$. We have $f(0)= \pm 1$, and $f(0)=1$ fails, so $f(0)=-1$. Therefore, the polynomial equation $2 f(w)^{7}+f(w)^{6}+1=0$ holds for all reals w. Again $f(w)= \pm 1$ for each individual w, yet $f(w)=1$ does not satisfy the above polynomial equation, so $f(w)=-1$ for all reals w. The solution $f(x) \equiv-1$ clearly fails the original functional equation.
Next, suppose there exists some c with $f(c)=0$. Taking $w=c$ above gives $f(0)=0$. Now $f(z)^{4}=z^{2} f(z)^{3}$ means $f(z)=0$ or z^{2} for each individual real z. Say there is some $x \neq 0$ where $f(x)=x^{2}$. By $P(x, x)$, we have either 0 or $\left(x^{2}+x^{4}\right)^{2}$ must equal $f\left(x^{2}+x^{4}\right)=f\left(f(x)+f(x)^{2}\right)=f(x)^{2}+x^{2} f(x)^{3}=x^{4}+x^{8}$, and both cases are impossible.
In conclusion, the only solution is $f(x) \equiv 0$.

Problem 6. [7] Let $A B C$ be an acute triangle with orthocenter H. A point $L \neq A$ lies on the plane of $A B C$ such that $\overline{H L} \perp \overline{A L}$ and $L B: L C=A B: A C$. Suppose $M_{1} \neq B$ lies on $\overline{B L}$ such that $\overline{H M_{1}} \perp \overline{B M_{1}}$ and $M_{2} \neq C$ lies on $\overline{C L}$ such that $\overline{H M_{2}} \perp \overline{C M_{2}}$. Prove that $\overline{M_{1} M_{2}}$ bisects $\overline{A L}$.

Solution:

Denote D, E, and F the feet of the $A-, B$-, and C-altitudes of $\triangle A B C$; we clearly have $L \in(H E A F), M_{1} \in$ $(H F B D), M_{2} \in(H D C E)$. Let A^{\prime} be the midpoint of $\overline{B C}$.

Lemma 1: $L \in \overline{A A^{\prime}},(B H C)$.
Proof 1: By definition L lies on the A-Apollonius circle of $\triangle A B C$. Note

$$
\frac{B E}{C F}=\frac{\sin (\angle C A B) \cdot A B}{\sin (\angle C A B) \cdot A C}=\frac{A B}{A C},
$$

so the spiral center of $\overline{B E}$ and $\overline{C F}$ also lies on the A-Apollonius circle. Moreover, the spiral center of $\overline{B C}$ and $\overline{E F}$ lies on $(H E A F)$ and is not A. By properties of spiral similarities these spiral centers coincide. We deduce L is the Miquel point of self-intersecting cyclic quadrilateral $B C F E$ with circumcenter A^{\prime}. The conclusion follows by well-known properties of Miquel points.
From this lemma we make a few key observations. By the "three-tangents lemma" $\overline{A E}$ and $\overline{A F}$ are tangent to $(H E A F)$, i.e. quadrilateral $A F L E$ is harmonic. Moreover, the homothety of center A and factor $\frac{1}{2}$ maps (BHC) to $\left(D E F A^{\prime}\right)$ and L to the midpoint X of $\overline{A L}$, i.e. $X \in\left(D E F A^{\prime}\right)$.
We finish by showing $M_{1}, M_{2} \in \overline{D X}$. Since $A F L E$ is harmonic, $\overline{E F}$ is the E-symmedian in $\triangle L E A$, so $\measuredangle F A L=$ $\measuredangle F E L=\measuredangle A E X$ and $\triangle A F E \sim \triangle X L E$ directly. Note A^{\prime}, C, E, L are concyclic by inversion of center A and
radius $\sqrt{A H \cdot A D}$. Thereby,

$$
\begin{aligned}
\measuredangle X D A^{\prime} & =\measuredangle X E A^{\prime}=\measuredangle X E L+\measuredangle L E A^{\prime}=\measuredangle A E F+\measuredangle L E A^{\prime} \\
& =\measuredangle D E C+\measuredangle L C A^{\prime}=\measuredangle D M_{2} C+\measuredangle M_{2} C D=\measuredangle M_{2} D B
\end{aligned}
$$

as needed. A similar argument shows $\measuredangle X D A^{\prime}=\measuredangle M_{1} D B$.
Remark: L is the A-Humpty point of $\triangle A B C ; X$ is the A-Dumpty point of $\triangle A E F$.

