CHMMC 2021-2022

Proof Round Solutions

Problem 1. [4] Find all ordered triples (a,b,c) of real numbers such that

$$(a-b)(b-c) + (b-c)(c-a) + (c-a)(a-b) = 0.$$

Solution:

By factoring, we obtain $(a-b)(b-c) = (c-a)^2$ and the same cyclic expressions. Thus, $(c-a)^3 = (a-b)^3 = (b-c)^3 = (a-b)(b-c)(c-a)$. Since a, b, c are reals, we have that a-b=b-c=c-a. If this common value were positive, then a > b, b > c, c > a, a contradiction. Likewise, this common value cannot be negative. Thus, a = b = c, so all such triples (a, b, c) necessarily take the form $(t, t, t), t \in \mathbb{R}$, and it is clear that all of these triples work. \Box

Problem 2. [4] For any positive integer *n*, let p(n) be the product of its digits in base-10 representation. Find the maximum possible value of $\frac{p(n)}{n}$ over all integers $n \ge 10$.

Solution: $\frac{9}{11}$.

Let S_d be the set of all (base-10) *d*-digit positive integers. For $n = \underline{a_d a_{d-1} \dots a_1} \in S_d$, we claim $\frac{p(n)}{n}$ is maximized, over all such *n* by choosing $n = \underline{99 \dots 9}$. To this end, suppose $n \in S_d$, all its digits are nonzero (as any number with 0 as a digit clearly does not maximize $\frac{p(n)}{n}$), and at place *t* the digit of *n* is $a_t < 9$. Then, by replacing a_t with 9, p(n) increases by a factor of $\frac{9}{a_t}$, whereas *n* increases by the factor

$$\frac{a_d a_{d-1} \dots 9 \dots a_1}{a_d a_{d-1} \dots a_t \dots a_1} < \frac{9}{a_t}$$

This inequality may be proven by cross-multiplying and noting $a_t < 9$. Hence, such *n* does not maximize $\frac{p(n)}{n}$. Now, over S_2, S_3, \ldots , we must find the largest of $\frac{p(n)}{n}$ for $n = 99, 999, \ldots$. For $n_d = 10^d - 1$, we have that

$$\frac{p(n_d)}{n_d} = \frac{9^d}{10^d - 1}$$

is strictly decreasing in *d*, since the numerator increases by a factor of 9 and the denominator increases by a factor of > 10 for each unit increment of *d*. It follows that the maximum of $\frac{p(n)}{n}$ over all integers $n \ge 10$ is $\frac{9.9}{99} = \boxed{\frac{9}{11}}.$

Problem 3. [6] Let $F(x_1,...,x_n)$ be a polynomial with real coefficients in n > 1 "indeterminate" variables $x_1,...,x_n$. We say that *F* is *n*-alternating if for all integers $1 \le i < j \le n$,

$$F(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n) = -F(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n),$$

i.e. swapping the order of indeterminates x_i, x_j flips the sign of the polynomial. For example, $x_1^2x_2 - x_2^2x_1$ is 2-alternating, whereas $x_1x_2x_3 + 2x_2x_3$ is not 3-alternating.

Note: two polynomials $P(x_1,...,x_n)$ and $Q(x_1,...,x_n)$ are considered equal if and only if each monomial constituent $\alpha x_1^{k_1}...x_n^{k_n}$ of P appears in Q with the same coefficient α , and vice versa. This is equivalent to saying that $P(x_1,...,x_n) = 0$ if and only if every possible monomial constituent of P has coefficient 0.

(1) [2] Compute a 3-alternating polynomial of degree 3.

(2) [4] Prove that the degree of any nonzero *n*-alternating polynomial is at least $\binom{n}{2}$.

Solution:

(1) Consider the degree 3 polynomial $x_1^2x_2 + x_2^2x_3 + x_3^2x_1 - x_1x_2^2 - x_2x_3^2 - x_3x_1^2$. It is 3-alternating, because, for instance, the swap of x_1, x_2 yields the polynomial $x_1x_2^2 + x_2x_3^2 + x_3x_1^2 - x_1^2x_2 - x_2^2x_3 - x_3^2x_1$. This polynomial is cyclic in x_1, x_2, x_3 , so the swaps of x_2, x_3 and x_3, x_1 act similarly.

(2) Let \mathscr{C} be the collection of all monomials of the form $x_1^{k_1} \dots x_n^{k_n}$, where k_1, \dots, k_n are non-negative integers. For any permutation $\sigma : \{1, \dots, n\} \to \{1, \dots, n\}$, there is a natural action $\mathscr{C} \to \mathscr{C}$ via $x_1^{k_1} \dots x_n^{k_n} \mapsto x_{\sigma(1)}^{k_1} \dots x_{\sigma(n)}^{k_n}$. Since σ is a bijection, the natural action associated to σ is also bijective.

Suppose that for some monomial $\mathfrak{M} = x_1^{k_1} \dots x_n^{k_n}$, there is an equality $k_i = k_j$ for some indices $1 \le i < j \le n$. Then, \mathfrak{M} is invariant under the action of transposition $(i \ j)$. By bijectivity, this action maps no other monomials to \mathfrak{M} . Hence, if the coefficient of \mathfrak{M} in *F* is nonzero, then the coefficient of \mathfrak{M} in

$$F(x_1,\ldots,x_i,\ldots,x_j,\ldots,x_n)+F(x_1,\ldots,x_j,\ldots,x_i,\ldots,x_n)$$

is also nonzero. Thus, if *F* is *n*-alternating, then the coefficient of \mathfrak{M} is zero. Therefore, if $\mathfrak{M} = x_1^{k_1} \dots x_n^{k_n}$ is a monomial of nonzero coefficient in an *n*-alternating polynomial *F*, then it is necessary that k_1, \dots, k_n are mutually distinct. It follows $k_1 + \dots + k_n$ is at least $0 + 1 + \dots + n - 1 = \binom{n}{2}$, completing the proof. \Box

Problem 4. [5] Show that for any three positive integers a, m, n such that *m* divides *n*, there exists a positive integer $k \le \frac{n}{m}$ such that gcd(a,m) = gcd(a+km,n).

Solution:

It suffices to prove this statement for the case gcd(a,m) = 1. To see why, we can simply divide *any* a,m,n by gcd(a,m) and obtain whole numbers $a' = \frac{a}{gcd(a,m)}$, $m' = \frac{m}{gcd(a,m)}$, and $n' = \frac{n}{gcd(a,m)}$ such that m' | n'. In particular, $\frac{n}{m} = \frac{n'}{m'}$ and for integers $1 \le k \le \frac{n'}{m'}$ we have $gcd(a' + km', n') = \frac{gcd(a+km,n)}{gcd(a,m)}$ which equals 1 iff gcd(a,m) = gcd(a + km,n). From here we assume that gcd(a,m) = 1; we aim to construct an integer k satisfying the problem condition.

Let *k* be the product of all primes dividing *n* but not *a* or *m* (we set k = 1 whenever there are no such primes). Notice $km \le n$. Moreover, by construction, gcd(a, km) = 1 and in fact every prime *p* dividing *n* divides exactly one of *a* or *km*. Thus, for every prime $p \mid n$, we have $p \nmid a + km$. Hence, gcd(a + km, n) = 1. \Box **Problem 5.** [7] Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that

$$f(f(x) + f(y)^2) = f(x)^2 + y^2 f(y)^3.$$

Here \mathbb{R} denotes the usual real numbers.

Solution:

Let P(x,y) denote the given assertion. We claim the only solution to the functional equation is $f(x) \equiv 0$ which clearly works.

First, $P(x,0) \implies f(f(x) + f(0)^2) = f(x)^2$. Now, for all reals y, z

$$P(f(z) + f(0)^{2}, y) \implies f(f(z)^{2} + f(y)^{2}) = f(f(z) + f(0)^{2})^{2} + y^{2}f(y)^{3} = f(z)^{4} + y^{2}f(y)^{3}$$

By symmetry, this implies that $f(z)^4 + y^2 f(y)^3 = f(y)^4 + z^2 f(z)^3$ for all reals y, z. Taking y = 0 gives $f(z)^4 = f(0)^4 + z^2 f(z)^3$.

Consider $z = f(w) + f(0)^2$ for some real w. Plugging this into the above gives

$$f(w)^8 = f(f(w) + f(0)^2)^4 = f(0)^4 + (f(w) + f(0)^2)^2 f(w)^6$$

$$\implies 2f(w)^7 f(0)^2 + f(w)^6 f(0)^4 + f(0)^4 = 0.$$

First, suppose $f \neq 0$ always. Then the above equation implies that $2f(w)^7 + f(w)^6 f(0)^2 + f(0)^2 = 0$ for all reals w. Therefore all the possible values f(w) that f can take on are contained in set of roots of the above degree 7 polynomial.

Now as we have $f(f(x) + f(0)^2) = f(x)^2$, if some value that *f* takes on has magnitude > 1, we can repeatedly apply this relation to see that *f* attains over 7 different distinct values. The same holds if *f* takes on a value that has magnitude < 1. Hence $f(x) = \pm 1$ for each *individual* real *x*.

By taking w = 0, we have that $2f(0)^7 + f(0)^8 + f(0)^2 = 0$. We have $f(0) = \pm 1$, and f(0) = 1 fails, so f(0) = -1. Therefore, the polynomial equation $2f(w)^7 + f(w)^6 + 1 = 0$ holds for all reals w. Again $f(w) = \pm 1$ for each individual w, yet f(w) = 1 does not satisfy the above polynomial equation, so f(w) = -1 for all reals w. The solution $f(x) \equiv -1$ clearly fails the original functional equation.

Next, suppose there exists some c with f(c) = 0. Taking w = c above gives f(0) = 0. Now $f(z)^4 = z^2 f(z)^3$ means f(z) = 0 or z^2 for each *individual* real z. Say there is some $x \neq 0$ where $f(x) = x^2$. By P(x,x), we have either 0 or $(x^2 + x^4)^2$ must equal $f(x^2 + x^4) = f(f(x) + f(x)^2) = f(x)^2 + x^2 f(x)^3 = x^4 + x^8$, and both cases are impossible.

In conclusion, the only solution is $f(x) \equiv 0$. \Box

Problem 6. [7] Let *ABC* be an acute triangle with orthocenter *H*. A point $L \neq A$ lies on the plane of *ABC* such that $\overline{HL} \perp \overline{AL}$ and LB : LC = AB : AC. Suppose $M_1 \neq B$ lies on \overline{BL} such that $\overline{HM_1} \perp \overline{BM_1}$ and $M_2 \neq C$ lies on \overline{CL} such that $\overline{HM_2} \perp \overline{CM_2}$. Prove that $\overline{M_1M_2}$ bisects \overline{AL} .

Solution:

Denote *D*, *E*, and *F* the feet of the *A*-, *B*-, and *C*-altitudes of $\triangle ABC$; we clearly have $L \in (HEAF), M_1 \in (HFBD), M_2 \in (HDCE)$. Let *A*' be the midpoint of \overline{BC} .

Lemma 1: $L \in \overline{AA'}$, (*BHC*). *Proof 1*: By definition *L* lies on the *A*-Apollonius circle of $\triangle ABC$. Note

$$\frac{BE}{CF} = \frac{\sin(\angle CAB) \cdot AB}{\sin(\angle CAB) \cdot AC} = \frac{AB}{AC},$$

so the spiral center of \overline{BE} and \overline{CF} also lies on the A-Apollonius circle. Moreover, the spiral center of \overline{BC} and \overline{EF} lies on (HEAF) and is not A. By properties of spiral similarities these spiral centers coincide. We deduce L is the Miquel point of self-intersecting cyclic quadrilateral BCFE with circumcenter A'. The conclusion follows by well-known properties of Miquel points.

From this lemma we make a few key observations. By the "three-tangents lemma" \overline{AE} and \overline{AF} are tangent to (HEAF), i.e. quadrilateral *AFLE* is harmonic. Moreover, the homothety of center *A* and factor $\frac{1}{2}$ maps (BHC) to (DEFA') and *L* to the midpoint *X* of \overline{AL} , i.e. $X \in (DEFA')$.

We finish by showing $M_1, M_2 \in \overline{DX}$. Since *AFLE* is harmonic, \overline{EF} is the *E*-symmetrian in $\triangle LEA$, so $\measuredangle FAL = \measuredangle FEL = \measuredangle AEX$ and $\triangle AFE \sim \triangle XLE$ directly. Note A', C, E, L are concyclic by inversion of center A and

radius $\sqrt{AH \cdot AD}$. Thereby,

$$\measuredangle XDA' = \measuredangle XEA' = \measuredangle XEL + \measuredangle LEA' = \measuredangle AEF + \measuredangle LEA'$$
$$= \measuredangle DEC + \measuredangle LCA' = \measuredangle DM_2C + \measuredangle M_2CD = \measuredangle M_2DB$$

as needed. A similar argument shows $\angle XDA' = \angle M_1DB$. \Box

Remark: *L* is the *A*-Humpty point of $\triangle ABC$; *X* is the *A*-Dumpty point of $\triangle AEF$.