
CHMMC 2021-2022

Proof Round Solutions
Problem 1. [4] Find all ordered triples (a,b,c) of real numbers such that

(a−b)(b− c)+(b− c)(c−a)+(c−a)(a−b) = 0.

Solution:
By factoring, we obtain (a−b)(b−c) = (c−a)2 and the same cyclic expressions. Thus, (c−a)3 = (a−b)3 =
(b− c)3 = (a− b)(b− c)(c− a). Since a,b,c are reals, we have that a− b = b− c = c− a. If this common
value were positive, then a > b,b > c,c > a, a contradiction. Likewise, this common value cannot be negative.
Thus, a = b = c, so all such triples (a,b,c) necessarily take the form (t, t, t), t ∈ R, and it is clear that all of
these triples work. �
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Problem 2. [4] For any positive integer n, let p(n) be the product of its digits in base-10 representation. Find
the maximum possible value of p(n)

n over all integers n≥ 10.

Solution:
9

11
.

Let Sd be the set of all (base-10) d-digit positive integers. For n = adad−1 . . .a1 ∈ Sd , we claim p(n)
n is max-

imized, over all such n by choosing n = 99 . . .9. To this end, suppose n ∈ Sd , all its digits are nonzero (as
any number with 0 as a digit clearly does not maximize p(n)

n ), and at place t the digit of n is at < 9. Then, by
replacing at with 9, p(n) increases by a factor of 9

at
, whereas n increases by the factor

adad−1 . . .9 . . .a1

adad−1 . . .at . . .a1
<

9
at

This inequality may be proven by cross-multiplying and noting at < 9. Hence, such n does not maximize p(n)
n .

Now, over S2,S3, . . . , we must find the largest of p(n)
n for n = 99,999, . . . . For nd = 10d−1, we have that

p(nd)

nd
=

9d

10d−1

is strictly decreasing in d, since the numerator increases by a factor of 9 and the denominator increases by a
factor of > 10 for each unit increment of d. It follows that the maximum of p(n)

n over all integers n ≥ 10 is

9·9
99 =

9
11

.
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Problem 3. [6] Let F(x1, . . . ,xn) be a polynomial with real coefficients in n > 1 “indeterminate” variables
x1, . . . ,xn. We say that F is n-alternating if for all integers 1≤ i < j ≤ n,

F(x1, . . . ,xi, . . . ,x j, . . . ,xn) =−F(x1, . . . ,x j, . . . ,xi, . . . ,xn),

i.e. swapping the order of indeterminates xi,x j flips the sign of the polynomial. For example, x2
1x2− x2

2x1 is
2-alternating, whereas x1x2x3 +2x2x3 is not 3-alternating.
Note: two polynomials P(x1, . . . ,xn) and Q(x1, . . . ,xn) are considered equal if and only if each monomial con-
stituent αxk1

1 . . .xkn
n of P appears in Q with the same coefficient α , and vice versa. This is equivalent to saying

that P(x1, . . . ,xn) = 0 if and only if every possible monomial constituent of P has coefficient 0.

(1) [2] Compute a 3-alternating polynomial of degree 3.

(2) [4] Prove that the degree of any nonzero n-alternating polynomial is at least
(n

2

)
.

Solution:
(1) Consider the degree 3 polynomial x2

1x2 + x2
2x3 + x2

3x1− x1x2
2− x2x2

3− x3x2
1. It is 3-alternating, because, for

instance, the swap of x1,x2 yields the polynomial x1x2
2 + x2x2

3 + x3x2
1− x2

1x2− x2
2x3− x2

3x1. This polynomial is
cyclic in x1,x2,x3, so the swaps of x2,x3 and x3,x1 act similarly.

(2) Let C be the collection of all monomials of the form xk1
1 . . .xkn

n , where k1, . . . ,kn are non-negative integers.
For any permutation σ : {1, . . . ,n}→ {1, . . . ,n}, there is a natural action C → C via xk1

1 . . .xkn
n 7→ xk1

σ(1) . . .x
kn
σ(n).

Since σ is a bijection, the natural action associated to σ is also bijective.
Suppose that for some monomial M = xk1

1 . . .xkn
n , there is an equality ki = k j for some indices 1 ≤ i < j ≤ n.

Then, M is invariant under the action of transposition (i j). By bijectivity, this action maps no other monomials
to M. Hence, if the coefficient of M in F is nonzero, then the coefficient of M in

F(x1, . . . ,xi, . . . ,x j, . . . ,xn)+F(x1, . . . ,x j, . . . ,xi, . . . ,xn)

is also nonzero. Thus, if F is n-alternating, then the coefficient of M is zero. Therefore, if M = xk1
1 . . .xkn

n
is a monomial of nonzero coefficient in an n-alternating polynomial F , then it is necessary that k1, . . . ,kn are
mutually distinct. It follows k1 + · · ·+ kn is at least 0+1+ · · ·+n−1 =

(n
2

)
, completing the proof. �
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Problem 4. [5] Show that for any three positive integers a,m,n such that m divides n, there exists a positive
integer k ≤ n

m such that gcd(a,m) = gcd(a+ km,n).

Solution:
It suffices to prove this statement for the case gcd(a,m) = 1. To see why, we can simply divide any a,m,n by
gcd(a,m) and obtain whole numbers a′ = a

gcd(a,m) , m′ = m
gcd(a,m) , and n′ = n

gcd(a,m) such that m′ | n′. In particular,
n
m = n′

m′ and for integers 1 ≤ k ≤ n′
m′ we have gcd(a′+ km′,n′) = gcd(a+km,n)

gcd(a,m) which equals 1 iff gcd(a,m) =

gcd(a + km,n). From here we assume that gcd(a,m) = 1; we aim to construct an integer k satisfying the
problem condition.
Let k be the product of all primes dividing n but not a or m (we set k = 1 whenever there are no such primes).
Notice km≤ n. Moreover, by construction, gcd(a,km) = 1 and in fact every prime p dividing n divides exactly
one of a or km. Thus, for every prime p | n, we have p - a+ km. Hence, gcd(a+ km,n) = 1. �
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Problem 5. [7] Find all functions f : R→ R such that

f ( f (x)+ f (y)2) = f (x)2 + y2 f (y)3.

Here R denotes the usual real numbers.

Solution:
Let P(x,y) denote the given assertion. We claim the only solution to the functional equation is f (x)≡ 0 which
clearly works.
First, P(x,0) =⇒ f ( f (x)+ f (0)2) = f (x)2.
Now, for all reals y,z

P( f (z)+ f (0)2,y) =⇒ f ( f (z)2 + f (y)2) = f ( f (z)+ f (0)2)2 + y2 f (y)3 = f (z)4 + y2 f (y)3

By symmetry, this implies that f (z)4 + y2 f (y)3 = f (y)4 + z2 f (z)3 for all reals y,z. Taking y = 0 gives f (z)4 =
f (0)4 + z2 f (z)3.
Consider z = f (w)+ f (0)2 for some real w. Plugging this into the above gives

f (w)8 = f ( f (w)+ f (0)2)4 = f (0)4 +( f (w)+ f (0)2)2 f (w)6

=⇒ 2 f (w)7 f (0)2 + f (w)6 f (0)4 + f (0)4 = 0.

First, suppose f 6= 0 always. Then the above equation implies that 2 f (w)7 + f (w)6 f (0)2 + f (0)2 = 0 for all
reals w. Therefore all the possible values f (w) that f can take on are contained in set of roots of the above
degree 7 polynomial.
Now as we have f ( f (x)+ f (0)2) = f (x)2, if some value that f takes on has magnitude > 1, we can repeatedly
apply this relation to see that f attains over 7 different distinct values. The same holds if f takes on a value that
has magnitude < 1. Hence f (x) =±1 for each individual real x.
By taking w = 0, we have that 2 f (0)7 + f (0)8 + f (0)2 = 0. We have f (0) = ±1, and f (0) = 1 fails, so
f (0) =−1. Therefore, the polynomial equation 2 f (w)7+ f (w)6+1 = 0 holds for all reals w. Again f (w) =±1
for each individual w, yet f (w) = 1 does not satisfy the above polynomial equation, so f (w) =−1 for all reals
w. The solution f (x)≡−1 clearly fails the original functional equation.
Next, suppose there exists some c with f (c) = 0. Taking w = c above gives f (0) = 0. Now f (z)4 = z2 f (z)3

means f (z) = 0 or z2 for each individual real z. Say there is some x 6= 0 where f (x) = x2. By P(x,x), we have
either 0 or (x2 + x4)2 must equal f (x2 + x4) = f ( f (x)+ f (x)2) = f (x)2 + x2 f (x)3 = x4 + x8, and both cases are
impossible.
In conclusion, the only solution is f (x)≡ 0. �
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Problem 6. [7] Let ABC be an acute triangle with orthocenter H. A point L 6= A lies on the plane of ABC such
that HL ⊥ AL and LB : LC = AB : AC. Suppose M1 6= B lies on BL such that HM1 ⊥ BM1 and M2 6=C lies on
CL such that HM2 ⊥CM2. Prove that M1M2 bisects AL.

Solution:
Denote D, E, and F the feet of the A-, B-, and C-altitudes of 4ABC; we clearly have L ∈ (HEAF),M1 ∈
(HFBD),M2 ∈ (HDCE). Let A′ be the midpoint of BC.

A

B

C
D

E

FX

L

A′

M1

M2H

Lemma 1: L ∈ AA′,(BHC).
Proof 1: By definition L lies on the A-Apollonius circle of4ABC. Note

BE
CF

=
sin(∠CAB) ·AB
sin(∠CAB) ·AC

=
AB
AC

,

so the spiral center of BE and CF also lies on the A-Apollonius circle. Moreover, the spiral center of BC and
EF lies on (HEAF) and is not A. By properties of spiral similarities these spiral centers coincide. We deduce L
is the Miquel point of self-intersecting cyclic quadrilateral BCFE with circumcenter A′. The conclusion follows
by well-known properties of Miquel points. �
From this lemma we make a few key observations. By the “three-tangents lemma” AE and AF are tangent to
(HEAF), i.e. quadrilateral AFLE is harmonic. Moreover, the homothety of center A and factor 1

2 maps (BHC)
to (DEFA′) and L to the midpoint X of AL, i.e. X ∈ (DEFA′).
We finish by showing M1,M2 ∈ DX . Since AFLE is harmonic, EF is the E-symmedian in4LEA, so ]FAL =
]FEL = ]AEX and 4AFE ∼ 4XLE directly. Note A′,C,E,L are concyclic by inversion of center A and
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radius
√

AH ·AD. Thereby,

]XDA′ = ]XEA′ = ]XEL+]LEA′ = ]AEF +]LEA′

= ]DEC+]LCA′ = ]DM2C+]M2CD = ]M2DB

as needed. A similar argument shows ]XDA′ = ]M1DB. �
Remark: L is the A-Humpty point of4ABC; X is the A-Dumpty point of4AEF .
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